1. |
Liu D, Zhang C, Zhang J, et al. Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium[J/OL]. Neurobiol Dis, 2023, 185: 106250[2023-08-02]. https://pubmed.ncbi.nlm.nih.gov/37536385/. DOI: 10.1016/j.nbd.2023.106250.
|
2. |
Cheong KX, Cheung CMG, Teo KYC. Review of fibrosis in neovascular age-related macular degeneration[J]. Am J Ophthalmol, 2023, 246: 192-222. DOI: 10.1016/j.ajo.2022.09.008.
|
3. |
Cheung CMG, Grewal DS, Teo KYC, et al. The evolution of fibrosis and atrophy and their relationship with visual outcomes in Asian persons with neovascular age-related macular degeneration[J]. Ophthalmol Retina, 2019, 3(12): 1045-1055. DOI: 10.1016/j.oret.2019.06.002.
|
4. |
Llorián-Salvador M, Byrne EM, Szczepan M, et al. Complement activation contributes to subretinal fibrosis through the induction of epithelial-to-mesenchymal transition (EMT) in retinal pigment epithelial cells[J/OL]. J Neuroinflammation, 2022, 19(1): 182[2022-07-14]. https://pubmed.ncbi.nlm.nih.gov/35831910/. DOI: 10.1186/s12974-022-02546-3.
|
5. |
Cao J, Zhao L, Li Y, et al. A subretinal matrigel rat choroidal neovascularization (CNV) model and inhibition of CNV and associated inflammation and fibrosis by VEGF trap[J]. Invest Ophthalmol Vis Sci, 2010, 51(11): 6009-6017. DOI: 10.1167/iovs.09-4956.
|
6. |
Sreekumar PG, Reddy ST, Hinton DR, et al. Mechanisms of RPE senescence and potential role of αB crystallin peptide as a senolytic agent in experimental AMD[J/OL]. Exp Eye Res, 2022, 215: 108918[2022-02-01]. https://pubmed.ncbi.nlm.nih.gov/34986369/. DOI: 10.1016/j.exer.2021.108918.
|
7. |
Hua Z, Yang W, Li D, et al. Metformin regulates the LIN28B-mediated JNK/STAT3 signaling pathway through miR-140-3p in subretinal fibrosis[J/OL]. Exp Ther Med, 2023, 26(5): 528[2023-09-27]. https://pubmed.ncbi.nlm.nih.gov/37869644/. DOI: 10.3892/etm.2023.12227.
|
8. |
Daniel E, Toth CA, Grunwald JE, et al. Risk of scar in the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2014, 121(3): 656-666. DOI: 10.1016/j.ophtha.2013.10.019.
|
9. |
Gräfe MGO, van de Kreeke JA, Willemse J, et al. Subretinal fibrosis detection using polarization sensitive optical coherence tomography[J/OL]. Transl Vis Sci Technol, 2020, 9(4): 13[2020-04-16]. https://pubmed.ncbi.nlm.nih.gov/32818100/. DOI: 10.1167/tvst.9.4.13.
|
10. |
Armendariz BG, Chakravarthy U. Fibrosis in age-related neovascular macular degeneration in the anti-VEGF era[J]. Eye (Lond), 2024, 38(17): 3243-3251. DOI: 10.1038/s41433-024-03308-6.
|
11. |
Bachmeier I, Armendariz BG, Yu S, et al. Fibrosis in neovascular age-related macular degeneration: a review of definitions based on clinical imaging[J]. Surv Ophthalmol, 2023, 68(5): 835-848. DOI: 10.1016/j.survophthal.2023.03.004.
|
12. |
Wong WM, Sun W, Vyas C, et al. Analysis of the pachychoroid phenotype in an Asian population: methodology and baseline study population characteristics[J]. Br J Ophthalmol, 2023, 107(5): 698-704. DOI: 10.1136/bjo-2022-322457.
|
13. |
Teo KYC, Joe AW, Nguyen V, et al. Prevalence and risk factors for thedevelopment of physician-graded subretinal fibrosis in eyes treatedfor neovascular age-related macular degeneration[J]. Retina, 2020, 40(12): 2285-2295. DOI: 10.1097/IAE.0000000000002779.
|
14. |
Willoughby AS, Ying GS, Toth CA, et al. Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2015, 122(9): 1846-1853. DOI: 10.1016/j.ophtha.2015.05.042.
|
15. |
Daniel E, Pan W, Ying GS, et al. Development and course of scars in the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2018, 125(7): 1037-1046. DOI: 10.1016/j.ophtha.2018.01.004.
|
16. |
Finn AP, Pistilli M, Tai V, et al. Localized optical coherence tomography precursors of macular atrophy and fibrotic scar in the comparison of age-related macular degenerationtreatments trials[J]. Am J Ophthalmol, 2021, 223: 338-347. DOI: 10.1016/j.ajo.2020.11.002.
|
17. |
Roberts PK, Schranz M, Motschi A, et al. Morphologic and microvascular differences between macular neovascularization with and without subretinal fibrosis[J/OL]. Transl Vis SciTechnol, 2021, 10(14): 1[2021-12-01]. https://pubmed.ncbi.nlm.nih.gov/34851359/. DOI: 10.1167/tvst.10.14.1.
|
18. |
Llorente-González S, Hernandez M, González-Zamora J, et al. The role of retinal fluidlocation in atrophy and fibrosis evolution of patients with neovascular age-related maculardegeneration long-term treated in real world[J/OL]. Acta Ophthalmol, 2022, 100(2): e521-e531[2021-06-04]. https://pubmed.ncbi.nlm.nih.gov/34085771/. DOI: 10.1111/aos.14905.
|
19. |
Roberts PK, Schranz M, Motschi A, et al. Baseline predictors for subretinal fibrosis inneovascular age-related macular degeneration[J/OL]. Sci Rep, 2022, 12(1): 88[2022-01-07]. https://pubmed.ncbi.nlm.nih.gov/34996934/. DOI: 10.1038/s41598-021-03716-8.
|
20. |
Angermann R, Franchi A, Stöckl V, et al. Intravitreal Aflibercept therapy and treatment outcomes of eyes with neovascular age-related macular degeneration in a real-lifesetting: a five-year follow-up investigation[J]. Ophthalmol Ther, 2022, 11(2): 559-571. DOI: 10.1007/s40123-022-00452-8.
|
21. |
Zhao X, Meng L, Luo M, et al. The influence of delayed treatment due to COVID-19 onpatients with neovascular age-related macular degeneration and polypoidal choroidalvasculopathy[J/OL]. Ther Adv Chronic Dis, 2021, 12: 20406223211026389[2021-06-22]. https://pubmed.ncbi.nlm.nih.gov/34221305/. DOI: 10.1177/20406223211026389.
|
22. |
Tenbrock L, Wolf J, Boneva S, et al. Subretinal fibrosis in neovascular age-related maculardegeneration: current concepts, therapeutic avenues, and future perspectives[J]. Cell TissueRes, 2022, 387(3): 361-375. DOI: 10.1007/s00441-021-03514-8.
|
23. |
Wichrowska M, Wichrowski P, Kocięcki J. Morphological and functional assessment of the optic nerve head and retinal ganglion cells in dry vs chronically treated wet age-related macular degeneration[J]. Clin Ophthalmol, 2022, 16: 2373-2384. DOI: 10.2147/OPTH.S372626.
|