Pathologic myopia-associated macular neovascularization (MMN) is a prevalent clinical ophthalmic condition characterized by pathological changes including lacquer cracks, choroidal neovascularization, and Fuchs spots. Recent advancements in fundus imaging technologies and diagnostic equipment have provided novel perspectives and strategies for the diagnosis, staging, treatment, and follow-up of MMN. The continuous development of various anti-vascular endothelial growth factor agents has effectively preserved visual acuity in pathologic myopia-associated macular neovascularization patients. However, in the clinical practice of MMN, there are still many challenges, such as the lack of unified disease definitions and staging criteria, differences in the criteria for assessing disease activity, the absence of standardized treatment protocols, and the urgent need for optimized follow-up strategies. To address these issues, Fundus Disease Group of Ophthalmological Society of Chinese Medical Association and Fundus Disease Group of Ophthalmologist Branch of Chinese Medical Doctor Association jointly developed the Expert consensus on standardized diagnosis and treatment of pathologic myopia-associated macular neovascularization in China based on the principles of evidence-based medicine. This consensus systematically outlines the core elements of MMN diagnosis and treatment, including disease definitions and clinical staging criteria, identification of high-risk factors, diagnostic procedures, follow-up management protocols, assessment of disease activity, selection of individualized treatment strategies, criteria for re-treatment, and long-term follow-up strategies. It provides ophthalmologists at all levels with a scientifically standardized and clinically applicable guide. The consensus particularly emphasizes the implementation of precision medicine in clinical practice, and stresses that individualized treatment decisions should be made within the framework of standardized care, taking into account the patient’s visual needs, lesion characteristics, treatment response, and socioeconomic factors.
Citation: Fundus Disease Group of Ophthalmological Society of Chinese Medical Association, Fundus Disease Group of Ophthalmologist Branch of Chinese Medical Doctor Association. Expert consensus on standardized diagnosis and treatment of pathologic myopia-associated macular neovascularization in China. Chinese Journal of Ocular Fundus Diseases, 2025, 41(8): 579-591. doi: 10.3760/cma.j.cn511434-20250526-00232 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Liu HH, Xu L, Wang YX, et al. Prevalence and progression of myopic retinopathy in Chinese adults: the Beijing Eye Study[J]. Ophthalmology, 2010, 117(9): 1763-1768. DOI: 10.1016/j.ophtha.2010.01.020. |
2. | Gao LQ, Liu W, Liang YB, et al. Prevalence and characteristics of myopic retinopathy in a rural Chinese adult population: the Handan Eye Study[J]. Arch Ophthalmol, 2011, 129(9): 1199-1204. DOI: 10.1001/archophthalmol.2011.230. |
3. | Haarman AEG, Tedja MS, Brussee C, et al. Prevalence of myopic macular features in dutch individuals of European ancestry with high myopia[J]. JAMA Ophthalmol, 2022, 140(2): 115-123. DOI: 10.1001/jamaophthalmol.2021.5346. |
4. | Cheung CMG, Arnold JJ, Holz FG, et al. Myopic choroidal neovascularization: review, guidance, and consensus statement on management[J]. Ophthalmology, 2017, 124(11): 1690-1711. DOI: 10.1016/j.ophtha.2017.04.028. |
5. | Ohno-Matsui K, Yoshida T, Futagami S, et al. Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia[J]. Br J Ophthalmol, 2003, 87(5): 570-573. DOI: 10.1136/bjo.87.5.570. |
6. | Yoshida T, Ohno-Matsui K, Yasuzumi K, et al. Myopic choroidal neovascularization: a 10-year follow-up[J]. Ophthalmology, 2003, 110(7): 1297-1305. DOI: 10.1016/S0161-6420(03)00461-5. |
7. | Curtin BJ, Karlin DB. Axial length measurements and fundus changes of the myopic eye[J]. Am J Ophthalmol, 1971, 71(Pt 1): 42-53. DOI: 10.1016/0002-9394(71)91092-0. |
8. | Avila MP, Weiter JJ, Jalkh AE, et al. Natural history of choroidal neovascularization in degenerative myopia[J]. Ophthalmology, 1984, 91(12): 1573-1581. DOI: 10.1016/s0161-6420(84)34116-1. |
9. | Ohno-Matsui K, Lai TY, Lai CC, et al. Updates of pathologic myopia[J]. Prog Retin Eye Res, 2016, 52: 156-187. DOI: 10.1016/j.preteyeres.2015.12.001. |
10. | Ohno-Matsui K, Kawasaki R, Jonas JB, et al. International photographic classification and grading system for myopic maculopathy[J]. Am J Ophthalmol, 2015, 159(5): 877-883. DOI: 10.1016/j.ajo.2015.01.022. |
11. | Ruiz-Medrano J, Montero JA, Flores-Moreno I, et al. Myopic maculopathy: current status and proposal for a new classification and grading system (ATN)[J]. Prog Retin Eye Res, 2019, 69: 80-115. DOI: 10.1016/j.preteyeres.2018.10.005. |
12. | Parolini B, Palmieri M, Finzi A, et al. The new myopic traction maculopathy staging system[J]. Eur J Ophthalmol, 2021, 31(3): 1299-1312. DOI: 10.1177/1120672120930590. |
13. | Zhang XJ, Chen XN, Tang FY, et al. Pathogenesis of myopic choroidal neovascularization: a systematic review and meta-analysis[J]. Surv Ophthalmol, 2023, 68(6): 1011-1026. DOI: 10.1016/j.survophthal.2023.07.006. |
14. | Ikuno Y, Sayanagi K, Soga K, et al. Lacquer crack formation and choroidal neovascularization in pathologic myopia[J]. Retina, 2008, 28(8): 1124-1131. DOI: 10.1097/IAE.0b013e318174417a. |
15. | Du R, Xie S, Lu H, et al. Hospital-based study of risk factors associated with development of myopic macular neovascularization in highly myopic eyes[J]. Ophthalmic Res, 2023, 66(1): 293-300. DOI: 10.1159/000527183. |
16. | Leveziel N, Caillaux V, Bastuji-Garin S, et al. Angiographic and optical coherence tomography characteristics of recent myopic choroidal neovascularization[J]. Am J Ophthalmol, 2013, 155(5): 913-919. DOI: 10.1016/j.ajo.2012.11.021. |
17. | Ren P, Lu L, Tang X, et al. Clinical features of simple hemorrhage and myopic choroidal neovascularization associated with lacquer cracks in pathologic myopia[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(12): 2661-2669. DOI: 10.1007/s00417-020-04778-6. |
18. | Cheung CM, Loh BK, Li X, et al. Choroidal thickness and risk characteristics of eyes with myopic choroidal neovascularization[J/OL]. Acta Ophthalmol, 2013, 91(7): e580-e581[2013-07-09]. https://pubmed.ncbi.nlm.nih.gov/23834717/. DOI: 10.1111/aos.12117. |
19. | Ikuno Y, Jo Y, Hamasaki T, et al. Ocular risk factors for choroidal neovascularization in pathologic myopia[J]. Invest Ophthalmol Vis Sci, 2010, 51(7): 3721-3725. DOI: 10.1167/iovs.09-3493. |
20. | Barteselli G, Lee SN, El-Emam S, et al. Macular choroidal volume variations in highly myopic eyes with myopic traction maculopathy and choroidal neovascularization[J]. Retina, 2014, 34(5): 880-889. DOI: 10.1097/IAE.0000000000000015. |
21. | Wolf S, Balciuniene VJ, Laganovska G, et al. RADIANCE: a randomized controlled study of ranibizumab in patients with choroidal neovascularization secondary to pathologic myopia[J]. Ophthalmology, 2014, 121(3): 682-692. DOI: 10.1016/j.ophtha.2013.10.023. |
22. | Ikuno Y, Ohno-Matsui K, Wong TY, et al. Intravitreal Aflibercept injection in patients with myopic choroidal neovascularization: the MYRROR study[J]. Ophthalmology, 2015, 122(6): 1220-1227. DOI: 10.1016/j.ophtha.2015.01.025. |
23. | Parolini B, Palmieri M, Finzi A, et al. Myopic traction maculopathy: a new perspective on classification and management[J]. Asia Pac J Ophthalmol (Phila), 2021, 10(1): 49-59. DOI: 10.1097/APO.0000000000000347. |
24. | Iacono P, Battaglia Parodi M, Papayannis A, et al. Fluorescein angiography and spectral-domain optical coherence tomography for monitoring anti-VEGF therapy in myopic choroidal neovascularization[J]. Ophthalmic Res, 2014, 52(1): 25-31. DOI: 10.1159/000358331. |
25. | Chhablani J, Deepa MJ, Tyagi M, et al. Fluorescein angiography and optical coherence tomography in myopic choroidal neovascularization[J]. Eye (Lond), 2015, 29(4): 519-524. DOI: 10.1038/eye.2014.345. |
26. | García-Layana A, Salinas-Alamán A, Maldonado MJ, et al. Optical coherence tomography to monitor photodynamic therapy in pathological myopia[J]. Br J Ophthalmol, 2006, 90(5): 555-558. DOI: 10.1136/bjo.2005.085555. |
27. | Ding X, Zhan Z, Sun L, et al. Retinal pigmental epithelium elevation and external limiting membrane interruption in myopic choroidal neovascularization: correlation with activity[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(10): 1831-1837. DOI: 10.1007/s00417-018-4060-3. |
28. | Lai TY, Cheung CM. Myopic choroidal neovascularization: diagnosis and treatment[J]. Retina, 2016, 36(9): 1614-1621. DOI: 10.1097/IAE.0000000000001227. |
29. | Ohno-Matsui K, Ikuno Y, Lai TYY, et al. Diagnosis and treatment guideline for myopic choroidal neovascularization due to pathologic myopia[J]. Prog Retin Eye Res, 2018, 63: 92-106. DOI: 10.1016/j.preteyeres.2017.10.005. |
30. | Miyata M, Ooto S, Hata M, et al. Detection of myopic choroidal neovascularization using optical coherence tomography angiography[J]. Am J Ophthalmol, 2016, 165: 108-114. DOI: 10.1016/j.ajo.2016.03.009. |
31. | Querques L, Giuffrè C, Corvi F, et al. Optical coherence tomography angiography of myopic choroidal neovascularisation[J]. Br J Ophthalmol, 2017, 101(5): 609-615. DOI: 10.1136/bjophthalmol-2016-309162. |
32. | Battaglia Parodi M, Iacono P, Bandello F. Correspondence of leakage on fluorescein angiography and optical coherence tomography parameters in diagnosis and monitoring of myopic choroidal neovascularization treated with bevacizumab[J]. Retina, 2016, 36(1): 104-109. DOI: 10.1097/IAE.0000000000000684. |
33. | Iacono P, Giorno P, Varano M, et al. Structural and optical coherence tomography angiography in myopic choroidal neovascularization: agreement with conventional fluorescein angiography[J]. Eur J Ophthalmol, 2021, 31(1): 149-157. DOI: 10.1177/1120672119882333. |
34. | Li S, Sun L, Zhao X, et al. Assessing the activity of myopic choroidal neovascularization: comparison between optical coherence tomography angiography and dye angiography[J]. Retina, 2020, 40(9): 1757-1764. DOI: 10.1097/IAE.0000000000002650. |
35. | Bagchi A, Schwartz R, Hykin P, et al. Diagnostic algorithm utilising multimodal imaging including optical coherence tomography angiography for the detection of myopic choroidal neovascularisation[J]. Eye (Lond), 2019, 33(7): 1111-1118. DOI: 10.1038/s41433-019-0378-2. |
36. | Hayasaka S, Uchida M, Setogawa T. Subretinal hemorrhages with or without choroidal neovascularization in the maculas of patients with pathologic myopia[J]. Graefe's Arch Clin Exp Ophthalmol, 1990, 228(4): 277-280. DOI: 10.1007/BF00920048. |
37. | Li H, Wen F, Wu DZ, et al. Fundus analysis and visual prognosis of macular hemorrhage in pathological myopia without choroidal neovasculopathy[J]. Eye Science, 2004, 20(1): 57-62. |
38. | 文峰, 吴德正, 吴乐正. 高度近视性黄斑出血的荧光素眼底血管造影和靛青绿血管造影分析[J]. 中华眼科杂志, 1998, 34(4): 267-269.Wen F, Wu DZ, Wu LZ. Analysis of fluorescein fundus angiography and indigo green angiography for macular hemorrhage caused by high myopia[J]. Chin J Ophthalmol, 1998, 34(4): 267-269. |
39. | Moriyama M, Ohno-Matsui K, Shimada N, et al. Correlation between visual prognosis and fundus autofluorescence and optical coherence tomographic findings in highly myopic eyes with submacular hemorrhage and without choroidal neovascularization[J]. Retina, 2011, 31(1): 74-80. DOI: 10.1097/IAE.0b013e3181e91148. |
40. | Ferri A, Ramtohul P, Russo A, et al. Central bouquet hemorrhages in pathologic myopia: clinical characteristics and prognostic relevance[J]. Ophthalmol Retina, 2024, 8(9): 914-923. DOI: 10.1016/j.oret.2024.03.010. |
41. | Chang KJ, Cheng CK, Peng CH. Clinical characteristics and visual outcome of macular hemorrhage in pathological myopia with or without choroidal neovascularization[J]. Taiwan J Ophthalmol, 2016, 6(3): 136-140. DOI: 10.1016/j.tjo.2016.05.007. |
42. | Battista M, Sacconi R, Borrelli E, et al. Discerning between macular hemorrhages due to macular neovascularization or due to spontaneous bruch’s membrane rupture in high myopia: a comparative analysis between octa and fluorescein angiography[J]. Ophthalmol Ther, 2022, 11(2): 821-831. DOI: 10.1007/s40123-022-00484-0. |
43. | Wu YJ, Feng YL, Yang JS, et al. Different approaches for treating myopic choroidal neovascularization: a network meta-analysis[J]. Int J Ophthalmol, 2023, 16(12): 2105-2116. DOI: 10.18240/ijo.2023.12.25. |
44. | Glachs L, Embacher S, Berghold A, et al. Treatment of myopic choroidal neovascularization: a network meta-analysis and review[J]. Graefe's Arch Clin Exp Ophthalmol, 2024, 262(6): 1693-1722. DOI: 10.1007/s00417-023-06271-2. |
45. | Gao L, Song Y, Sun X, et al. Safety and efficacy of intravitreal injection of conbercept for the treatment of patients with choroidal neovascularization secondary to pathological myopia: results from the SHINY study[J/OL]. Acta Ophthalmol, 2024, 102(4): e577-e586[2023-11-27]. https://pubmed.ncbi.nlm.nih.gov/38009430/. DOI: 10.1111/aos.15810. |
46. | Dong L, Li G, Song Z, et al. Comparison of antivascular endothelial growth factor treatment for myopia choroidal neovascularisation: a systematic review and meta-analysis of randomised controlled trials[J/OL]. BMJ Open, 2023, 13(7): e067921[2023-07-20]. https://pubmed.ncbi.nlm.nih.gov/37474162/. DOI: 10.1136/bmjopen-2022-067921. |
47. | 刘政群, 朱小华, 岳辉. 玻璃体腔注射Avastin治疗pmCNV的临床观察[J]. 国际眼科杂志, 2013, 13(5): 953-956. DOI: 10.3980/j.issn.1672-5123.2013.05.34.Liu ZQ, Zhu XH, Yue H. Clinical observation on pathologic myopia CNV treated with intravitreal bevacizumab[J]. Int Eye Sci, 2013, 13(5): 953-956. DOI: 10.3980/j.issn.1672-5123.2013.05.34. |
48. | Wang E, Chen Y. Intravitreal anti-vascular endothelial growth factor for choroidal neovascularization secondary to pathologic myopia: systematic review and meta-analysis[J]. Retina, 2013, 33(7): 1375-1392. DOI: 10.1097/IAE.0b013e31827d260a. |
49. | Li S, Ding X, Zhang J, et al. Two different initial treatment regimens of ranibizumab in myopic choroidal neovascularization: 12-month results from a randomized controlled study-response[J]. Clin Exp Ophthalmol, 2019, 47(5): 685-686. DOI: 10.1111/ceo.13507. |
50. | Kung YH, Wu TT, Huang YH. One-year outcome of two different initial dosing regimens of intravitreal ranibizumab for myopic choroidal neovascularization[J/OL]. Acta Ophthalmol, 2014, 92(8): e615-e620[2014-06-12]. https://pubmed.ncbi.nlm.nih.gov/24924911/. DOI: 10.1111/aos.12457. |
51. | 彭梦颖, 周琼. 雷珠单抗治疗病理性近视继发脉络膜新生血管不同给药方案疗效比较[J]. 国际眼科杂志, 2022, 22(11): 1851-1855. DOI: 10.3980/j.issn.1672-5123.2022.11.17.Peng MY, Zhou Q. Comparative study on the efficacy of different dosage regimens of Ranibizumab in the treatment of choroid neovascularization secondary to pathological myopia[J]. Int Eye Sci, 2022, 22(11): 1851-1855. DOI: 10.3980/j.issn.1672-5123.2022.11.17. |
52. | Wakabayashi T, Ikuno Y, Gomi F. Different dosing of intravitreal bevacizumab for choroidal neovascularization because of pathologic myopia[J]. Retina, 2011, 31(5): 880-886. DOI: 10.1097/IAE.0b013e3181f2a293. |
53. | Gong B, Bo Y, Zhang P, et al. Efficacy and safety of different conbercept injection regimens in the treatment of choroidal neovascularization in pathological myopia: a retrospective study[J]. Int Ophthalmol, 2023, 43(11): 4079-4086. DOI: 10.1007/s10792-023-02825-9. |
54. | Chen Y, Sharma T, Li X, et al. Ranibizumab versus verteporfin photodynamic therapy in asian patients with myopic choroidal neovascularization: brilliance, a 12-month, randomized, double-masked study[J]. Retina, 2019, 39(10): 1985-1994. DOI: 10.1097/IAE.0000000000002292. |
55. | Gharbiya M, Cruciani F, Parisi F, et al. Long-term results of intravitreal bevacizumab for choroidal neovascularisation in pathological myopia[J]. Br J Ophthalmol, 2012, 96(8): 1068-1072. DOI: 10.1136/bjophthalmol-2012-301639. |
56. | Ladaique M, Dirani A, Ambresin A. Long-term follow-up of choroidal neovascularization in pathological myopia treated with intravitreal ranibizumab[J]. Klin Monbl Augenheilkd, 2015, 232(4): 542-547. DOI: 10.1055/s-0035-1545817. |
57. | Onishi Y, Yokoi T, Kasahara K, et al. Five-year outcomes of intravitreal ranibizumab for choroidal neovascularization in patients with pathologic myopia[J]. Retina, 2019, 39(7): 1289-1298. DOI: 10.1097/IAE.0000000000002164. |
58. | Lai TY, Luk FO, Lee GK, et al. Long-term outcome of intravitreal anti-vascular endothelial growth factor therapy with bevacizumab or ranibizumab as primary treatment for subfoveal myopic choroidal neovascularization[J]. Eye (Lond), 2012, 26(7): 1004-1011. DOI: 10.1038/eye.2012.97. |
59. | Pastore MR, Capuano V, Bruyère E, et al. Nine-year outcome of ranibizumab monotherapy for choroidal neovascularization secondary to pathologic myopia[J]. Ophthalmologica, 2018, 239(2-3): 133-142. DOI: 10.1159/000485112. |
60. | Mallone F, Giustolisi R, Franzone F, et al. Ten-year outcomes of intravitreal Bevacizumab for myopic choroidal neovascularization: analysis of prognostic factors[J]. Pharmaceuticals (Basel), 2021, 14(10): 1042. DOI: 10.3390/ph14101042. |
61. | Sakata R, Miyata M, Ooto S, et al. Ten-year visual outcome and change in chorioretinal atrophy after intravitreal ranibizumab for macular neovascularization in pathologic myopia[J]. Retina, 2023, 43(11): 1863-1871. DOI: 10.1097/IAE.0000000000003869. |
- 1. Liu HH, Xu L, Wang YX, et al. Prevalence and progression of myopic retinopathy in Chinese adults: the Beijing Eye Study[J]. Ophthalmology, 2010, 117(9): 1763-1768. DOI: 10.1016/j.ophtha.2010.01.020.
- 2. Gao LQ, Liu W, Liang YB, et al. Prevalence and characteristics of myopic retinopathy in a rural Chinese adult population: the Handan Eye Study[J]. Arch Ophthalmol, 2011, 129(9): 1199-1204. DOI: 10.1001/archophthalmol.2011.230.
- 3. Haarman AEG, Tedja MS, Brussee C, et al. Prevalence of myopic macular features in dutch individuals of European ancestry with high myopia[J]. JAMA Ophthalmol, 2022, 140(2): 115-123. DOI: 10.1001/jamaophthalmol.2021.5346.
- 4. Cheung CMG, Arnold JJ, Holz FG, et al. Myopic choroidal neovascularization: review, guidance, and consensus statement on management[J]. Ophthalmology, 2017, 124(11): 1690-1711. DOI: 10.1016/j.ophtha.2017.04.028.
- 5. Ohno-Matsui K, Yoshida T, Futagami S, et al. Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia[J]. Br J Ophthalmol, 2003, 87(5): 570-573. DOI: 10.1136/bjo.87.5.570.
- 6. Yoshida T, Ohno-Matsui K, Yasuzumi K, et al. Myopic choroidal neovascularization: a 10-year follow-up[J]. Ophthalmology, 2003, 110(7): 1297-1305. DOI: 10.1016/S0161-6420(03)00461-5.
- 7. Curtin BJ, Karlin DB. Axial length measurements and fundus changes of the myopic eye[J]. Am J Ophthalmol, 1971, 71(Pt 1): 42-53. DOI: 10.1016/0002-9394(71)91092-0.
- 8. Avila MP, Weiter JJ, Jalkh AE, et al. Natural history of choroidal neovascularization in degenerative myopia[J]. Ophthalmology, 1984, 91(12): 1573-1581. DOI: 10.1016/s0161-6420(84)34116-1.
- 9. Ohno-Matsui K, Lai TY, Lai CC, et al. Updates of pathologic myopia[J]. Prog Retin Eye Res, 2016, 52: 156-187. DOI: 10.1016/j.preteyeres.2015.12.001.
- 10. Ohno-Matsui K, Kawasaki R, Jonas JB, et al. International photographic classification and grading system for myopic maculopathy[J]. Am J Ophthalmol, 2015, 159(5): 877-883. DOI: 10.1016/j.ajo.2015.01.022.
- 11. Ruiz-Medrano J, Montero JA, Flores-Moreno I, et al. Myopic maculopathy: current status and proposal for a new classification and grading system (ATN)[J]. Prog Retin Eye Res, 2019, 69: 80-115. DOI: 10.1016/j.preteyeres.2018.10.005.
- 12. Parolini B, Palmieri M, Finzi A, et al. The new myopic traction maculopathy staging system[J]. Eur J Ophthalmol, 2021, 31(3): 1299-1312. DOI: 10.1177/1120672120930590.
- 13. Zhang XJ, Chen XN, Tang FY, et al. Pathogenesis of myopic choroidal neovascularization: a systematic review and meta-analysis[J]. Surv Ophthalmol, 2023, 68(6): 1011-1026. DOI: 10.1016/j.survophthal.2023.07.006.
- 14. Ikuno Y, Sayanagi K, Soga K, et al. Lacquer crack formation and choroidal neovascularization in pathologic myopia[J]. Retina, 2008, 28(8): 1124-1131. DOI: 10.1097/IAE.0b013e318174417a.
- 15. Du R, Xie S, Lu H, et al. Hospital-based study of risk factors associated with development of myopic macular neovascularization in highly myopic eyes[J]. Ophthalmic Res, 2023, 66(1): 293-300. DOI: 10.1159/000527183.
- 16. Leveziel N, Caillaux V, Bastuji-Garin S, et al. Angiographic and optical coherence tomography characteristics of recent myopic choroidal neovascularization[J]. Am J Ophthalmol, 2013, 155(5): 913-919. DOI: 10.1016/j.ajo.2012.11.021.
- 17. Ren P, Lu L, Tang X, et al. Clinical features of simple hemorrhage and myopic choroidal neovascularization associated with lacquer cracks in pathologic myopia[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(12): 2661-2669. DOI: 10.1007/s00417-020-04778-6.
- 18. Cheung CM, Loh BK, Li X, et al. Choroidal thickness and risk characteristics of eyes with myopic choroidal neovascularization[J/OL]. Acta Ophthalmol, 2013, 91(7): e580-e581[2013-07-09]. https://pubmed.ncbi.nlm.nih.gov/23834717/. DOI: 10.1111/aos.12117.
- 19. Ikuno Y, Jo Y, Hamasaki T, et al. Ocular risk factors for choroidal neovascularization in pathologic myopia[J]. Invest Ophthalmol Vis Sci, 2010, 51(7): 3721-3725. DOI: 10.1167/iovs.09-3493.
- 20. Barteselli G, Lee SN, El-Emam S, et al. Macular choroidal volume variations in highly myopic eyes with myopic traction maculopathy and choroidal neovascularization[J]. Retina, 2014, 34(5): 880-889. DOI: 10.1097/IAE.0000000000000015.
- 21. Wolf S, Balciuniene VJ, Laganovska G, et al. RADIANCE: a randomized controlled study of ranibizumab in patients with choroidal neovascularization secondary to pathologic myopia[J]. Ophthalmology, 2014, 121(3): 682-692. DOI: 10.1016/j.ophtha.2013.10.023.
- 22. Ikuno Y, Ohno-Matsui K, Wong TY, et al. Intravitreal Aflibercept injection in patients with myopic choroidal neovascularization: the MYRROR study[J]. Ophthalmology, 2015, 122(6): 1220-1227. DOI: 10.1016/j.ophtha.2015.01.025.
- 23. Parolini B, Palmieri M, Finzi A, et al. Myopic traction maculopathy: a new perspective on classification and management[J]. Asia Pac J Ophthalmol (Phila), 2021, 10(1): 49-59. DOI: 10.1097/APO.0000000000000347.
- 24. Iacono P, Battaglia Parodi M, Papayannis A, et al. Fluorescein angiography and spectral-domain optical coherence tomography for monitoring anti-VEGF therapy in myopic choroidal neovascularization[J]. Ophthalmic Res, 2014, 52(1): 25-31. DOI: 10.1159/000358331.
- 25. Chhablani J, Deepa MJ, Tyagi M, et al. Fluorescein angiography and optical coherence tomography in myopic choroidal neovascularization[J]. Eye (Lond), 2015, 29(4): 519-524. DOI: 10.1038/eye.2014.345.
- 26. García-Layana A, Salinas-Alamán A, Maldonado MJ, et al. Optical coherence tomography to monitor photodynamic therapy in pathological myopia[J]. Br J Ophthalmol, 2006, 90(5): 555-558. DOI: 10.1136/bjo.2005.085555.
- 27. Ding X, Zhan Z, Sun L, et al. Retinal pigmental epithelium elevation and external limiting membrane interruption in myopic choroidal neovascularization: correlation with activity[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(10): 1831-1837. DOI: 10.1007/s00417-018-4060-3.
- 28. Lai TY, Cheung CM. Myopic choroidal neovascularization: diagnosis and treatment[J]. Retina, 2016, 36(9): 1614-1621. DOI: 10.1097/IAE.0000000000001227.
- 29. Ohno-Matsui K, Ikuno Y, Lai TYY, et al. Diagnosis and treatment guideline for myopic choroidal neovascularization due to pathologic myopia[J]. Prog Retin Eye Res, 2018, 63: 92-106. DOI: 10.1016/j.preteyeres.2017.10.005.
- 30. Miyata M, Ooto S, Hata M, et al. Detection of myopic choroidal neovascularization using optical coherence tomography angiography[J]. Am J Ophthalmol, 2016, 165: 108-114. DOI: 10.1016/j.ajo.2016.03.009.
- 31. Querques L, Giuffrè C, Corvi F, et al. Optical coherence tomography angiography of myopic choroidal neovascularisation[J]. Br J Ophthalmol, 2017, 101(5): 609-615. DOI: 10.1136/bjophthalmol-2016-309162.
- 32. Battaglia Parodi M, Iacono P, Bandello F. Correspondence of leakage on fluorescein angiography and optical coherence tomography parameters in diagnosis and monitoring of myopic choroidal neovascularization treated with bevacizumab[J]. Retina, 2016, 36(1): 104-109. DOI: 10.1097/IAE.0000000000000684.
- 33. Iacono P, Giorno P, Varano M, et al. Structural and optical coherence tomography angiography in myopic choroidal neovascularization: agreement with conventional fluorescein angiography[J]. Eur J Ophthalmol, 2021, 31(1): 149-157. DOI: 10.1177/1120672119882333.
- 34. Li S, Sun L, Zhao X, et al. Assessing the activity of myopic choroidal neovascularization: comparison between optical coherence tomography angiography and dye angiography[J]. Retina, 2020, 40(9): 1757-1764. DOI: 10.1097/IAE.0000000000002650.
- 35. Bagchi A, Schwartz R, Hykin P, et al. Diagnostic algorithm utilising multimodal imaging including optical coherence tomography angiography for the detection of myopic choroidal neovascularisation[J]. Eye (Lond), 2019, 33(7): 1111-1118. DOI: 10.1038/s41433-019-0378-2.
- 36. Hayasaka S, Uchida M, Setogawa T. Subretinal hemorrhages with or without choroidal neovascularization in the maculas of patients with pathologic myopia[J]. Graefe's Arch Clin Exp Ophthalmol, 1990, 228(4): 277-280. DOI: 10.1007/BF00920048.
- 37. Li H, Wen F, Wu DZ, et al. Fundus analysis and visual prognosis of macular hemorrhage in pathological myopia without choroidal neovasculopathy[J]. Eye Science, 2004, 20(1): 57-62.
- 38. 文峰, 吴德正, 吴乐正. 高度近视性黄斑出血的荧光素眼底血管造影和靛青绿血管造影分析[J]. 中华眼科杂志, 1998, 34(4): 267-269.Wen F, Wu DZ, Wu LZ. Analysis of fluorescein fundus angiography and indigo green angiography for macular hemorrhage caused by high myopia[J]. Chin J Ophthalmol, 1998, 34(4): 267-269.
- 39. Moriyama M, Ohno-Matsui K, Shimada N, et al. Correlation between visual prognosis and fundus autofluorescence and optical coherence tomographic findings in highly myopic eyes with submacular hemorrhage and without choroidal neovascularization[J]. Retina, 2011, 31(1): 74-80. DOI: 10.1097/IAE.0b013e3181e91148.
- 40. Ferri A, Ramtohul P, Russo A, et al. Central bouquet hemorrhages in pathologic myopia: clinical characteristics and prognostic relevance[J]. Ophthalmol Retina, 2024, 8(9): 914-923. DOI: 10.1016/j.oret.2024.03.010.
- 41. Chang KJ, Cheng CK, Peng CH. Clinical characteristics and visual outcome of macular hemorrhage in pathological myopia with or without choroidal neovascularization[J]. Taiwan J Ophthalmol, 2016, 6(3): 136-140. DOI: 10.1016/j.tjo.2016.05.007.
- 42. Battista M, Sacconi R, Borrelli E, et al. Discerning between macular hemorrhages due to macular neovascularization or due to spontaneous bruch’s membrane rupture in high myopia: a comparative analysis between octa and fluorescein angiography[J]. Ophthalmol Ther, 2022, 11(2): 821-831. DOI: 10.1007/s40123-022-00484-0.
- 43. Wu YJ, Feng YL, Yang JS, et al. Different approaches for treating myopic choroidal neovascularization: a network meta-analysis[J]. Int J Ophthalmol, 2023, 16(12): 2105-2116. DOI: 10.18240/ijo.2023.12.25.
- 44. Glachs L, Embacher S, Berghold A, et al. Treatment of myopic choroidal neovascularization: a network meta-analysis and review[J]. Graefe's Arch Clin Exp Ophthalmol, 2024, 262(6): 1693-1722. DOI: 10.1007/s00417-023-06271-2.
- 45. Gao L, Song Y, Sun X, et al. Safety and efficacy of intravitreal injection of conbercept for the treatment of patients with choroidal neovascularization secondary to pathological myopia: results from the SHINY study[J/OL]. Acta Ophthalmol, 2024, 102(4): e577-e586[2023-11-27]. https://pubmed.ncbi.nlm.nih.gov/38009430/. DOI: 10.1111/aos.15810.
- 46. Dong L, Li G, Song Z, et al. Comparison of antivascular endothelial growth factor treatment for myopia choroidal neovascularisation: a systematic review and meta-analysis of randomised controlled trials[J/OL]. BMJ Open, 2023, 13(7): e067921[2023-07-20]. https://pubmed.ncbi.nlm.nih.gov/37474162/. DOI: 10.1136/bmjopen-2022-067921.
- 47. 刘政群, 朱小华, 岳辉. 玻璃体腔注射Avastin治疗pmCNV的临床观察[J]. 国际眼科杂志, 2013, 13(5): 953-956. DOI: 10.3980/j.issn.1672-5123.2013.05.34.Liu ZQ, Zhu XH, Yue H. Clinical observation on pathologic myopia CNV treated with intravitreal bevacizumab[J]. Int Eye Sci, 2013, 13(5): 953-956. DOI: 10.3980/j.issn.1672-5123.2013.05.34.
- 48. Wang E, Chen Y. Intravitreal anti-vascular endothelial growth factor for choroidal neovascularization secondary to pathologic myopia: systematic review and meta-analysis[J]. Retina, 2013, 33(7): 1375-1392. DOI: 10.1097/IAE.0b013e31827d260a.
- 49. Li S, Ding X, Zhang J, et al. Two different initial treatment regimens of ranibizumab in myopic choroidal neovascularization: 12-month results from a randomized controlled study-response[J]. Clin Exp Ophthalmol, 2019, 47(5): 685-686. DOI: 10.1111/ceo.13507.
- 50. Kung YH, Wu TT, Huang YH. One-year outcome of two different initial dosing regimens of intravitreal ranibizumab for myopic choroidal neovascularization[J/OL]. Acta Ophthalmol, 2014, 92(8): e615-e620[2014-06-12]. https://pubmed.ncbi.nlm.nih.gov/24924911/. DOI: 10.1111/aos.12457.
- 51. 彭梦颖, 周琼. 雷珠单抗治疗病理性近视继发脉络膜新生血管不同给药方案疗效比较[J]. 国际眼科杂志, 2022, 22(11): 1851-1855. DOI: 10.3980/j.issn.1672-5123.2022.11.17.Peng MY, Zhou Q. Comparative study on the efficacy of different dosage regimens of Ranibizumab in the treatment of choroid neovascularization secondary to pathological myopia[J]. Int Eye Sci, 2022, 22(11): 1851-1855. DOI: 10.3980/j.issn.1672-5123.2022.11.17.
- 52. Wakabayashi T, Ikuno Y, Gomi F. Different dosing of intravitreal bevacizumab for choroidal neovascularization because of pathologic myopia[J]. Retina, 2011, 31(5): 880-886. DOI: 10.1097/IAE.0b013e3181f2a293.
- 53. Gong B, Bo Y, Zhang P, et al. Efficacy and safety of different conbercept injection regimens in the treatment of choroidal neovascularization in pathological myopia: a retrospective study[J]. Int Ophthalmol, 2023, 43(11): 4079-4086. DOI: 10.1007/s10792-023-02825-9.
- 54. Chen Y, Sharma T, Li X, et al. Ranibizumab versus verteporfin photodynamic therapy in asian patients with myopic choroidal neovascularization: brilliance, a 12-month, randomized, double-masked study[J]. Retina, 2019, 39(10): 1985-1994. DOI: 10.1097/IAE.0000000000002292.
- 55. Gharbiya M, Cruciani F, Parisi F, et al. Long-term results of intravitreal bevacizumab for choroidal neovascularisation in pathological myopia[J]. Br J Ophthalmol, 2012, 96(8): 1068-1072. DOI: 10.1136/bjophthalmol-2012-301639.
- 56. Ladaique M, Dirani A, Ambresin A. Long-term follow-up of choroidal neovascularization in pathological myopia treated with intravitreal ranibizumab[J]. Klin Monbl Augenheilkd, 2015, 232(4): 542-547. DOI: 10.1055/s-0035-1545817.
- 57. Onishi Y, Yokoi T, Kasahara K, et al. Five-year outcomes of intravitreal ranibizumab for choroidal neovascularization in patients with pathologic myopia[J]. Retina, 2019, 39(7): 1289-1298. DOI: 10.1097/IAE.0000000000002164.
- 58. Lai TY, Luk FO, Lee GK, et al. Long-term outcome of intravitreal anti-vascular endothelial growth factor therapy with bevacizumab or ranibizumab as primary treatment for subfoveal myopic choroidal neovascularization[J]. Eye (Lond), 2012, 26(7): 1004-1011. DOI: 10.1038/eye.2012.97.
- 59. Pastore MR, Capuano V, Bruyère E, et al. Nine-year outcome of ranibizumab monotherapy for choroidal neovascularization secondary to pathologic myopia[J]. Ophthalmologica, 2018, 239(2-3): 133-142. DOI: 10.1159/000485112.
- 60. Mallone F, Giustolisi R, Franzone F, et al. Ten-year outcomes of intravitreal Bevacizumab for myopic choroidal neovascularization: analysis of prognostic factors[J]. Pharmaceuticals (Basel), 2021, 14(10): 1042. DOI: 10.3390/ph14101042.
- 61. Sakata R, Miyata M, Ooto S, et al. Ten-year visual outcome and change in chorioretinal atrophy after intravitreal ranibizumab for macular neovascularization in pathologic myopia[J]. Retina, 2023, 43(11): 1863-1871. DOI: 10.1097/IAE.0000000000003869.