1. |
Chu L, Bi C, Wang C, et al. the relationship between complements and age-related macular degeneration and its pathogenesis[J/OL]. J Ophthalmol, 2024, 2024, 6416773[2024-01-02]. https://pubmed.ncbi.nlm.nih.gov/38205100/. DOI: 10.1155/2024/6416773.
|
2. |
Thomas CJ, Mirza RG, Gill MK. Age-related macular degeneration[J]. Med Clin North Am, 2021, 105(3): 473-491. DOI: 10.1016/j.mcna.2021.01.003.
|
3. |
Yatsu T, Nagata A, Chiba T, et al. Reduction of Heterogeneous nuclear ribonucleoprotein A1 levels in retinal pigment epithelial cells induces inflammation and inhibits autophagy flux: pathology of age-related macular degeneration[J/OL]. Biochem Biophys Rep, 2025, 43: 102195[2025-08-07]. https://pubmed.ncbi.nlm.nih.gov/40821904/. DOI: 10.1016/j.bbrep.2025.102195.
|
4. |
Wang X, Lin Q, Tian L, et al. Electroacupuncture alleviates damage to myopic RGCs probably through lncRNA-XR_002789763.1-mediated mitophagy[J/OL]. Chin Med, 2025, 20(1): 16[2025-02-02]. https://pubmed.ncbi.nlm.nih.gov/39894836/. DOI: 10.1186/s13020-025-01058-5.
|
5. |
Shariq M, Quadir N, Alam A, et al. The exploitation of host autophagy and ubiquitin machinery by mycobacterium tuberculosis in shaping immune responses and host defense during infection[J]. Autophagy, 2023, 19(1): 3-23. DOI: 10.1080/15548627.2021.2021495.
|
6. |
Zhao X, Wang Z, Wang L, et al. The PINK1/Parkin signaling pathway-mediated mitophagy: a forgotten protagonist in myocardial ischemia/reperfusion injury[J/OL]. Pharmacol Res, 2024, 209: 107466[2024-10-15]. https://pubmed.ncbi.nlm.nih.gov/39419133/. DOI: 10.1016/j.phrs.2024.107466.
|
7. |
Sulkshane P, Ram J, Thakur A, et al. Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia[J/OL]. Redox Biol, 2021, 45: 102047[2021-06-17]. https://pubmed.ncbi.nlm.nih.gov/34175667/. DOI: 10.1016/j.redox.2021.102047.
|
8. |
Sun Y, Wen F, Yan C, et al. Mitophagy protects the retina against anti-vascular endothelial growth factor therapy-driven hypoxia via hypoxia-inducible factor-1alpha signaling[J/OL]. Front Cell Dev Biol, 2021, 9: 727822[2021-11-01]. https://pubmed.ncbi.nlm.nih.gov/34790659/. DOI: 10.3389/fcell.2021.727822.
|
9. |
Govers LP, Grimm C. The connection between cellular metabolism and retinal disease[J]. Adv Exp Med Biol, 2025, 1468: 267-271. DOI: 10.1007/978-3-031-76550-6_44.
|
10. |
Yang Z, Luo Y, Yang Z, et al. Mitochondrial dynamics dysfunction and neurodevelopmental disorders: from pathological mechanisms to clinical translation[J]. Neural Regen Res, 2025, 2025: E1(2025-06-19)[2025-08-08]. https://pubmed.ncbi.nlm.nih.gov/40537021/. DOI: 10.4103/NRR.NRR-D-24-01422.[published online ahead of print].
|
11. |
Baek A, Son S, Baek YM, et al. KRT8 (keratin 8) attenuates necrotic cell death by facilitating mitochondrial fission-mediated mitophagy through interaction with PLEC (plectin)[J]. Autophagy, 2021, 17(12): 3939-3956. DOI: 10.1080/15548627.2021.1897962.
|
12. |
Wu F, Dang B, Hu L, et al. Lycium barbarum polysaccharide inhibits blue-light-induced skin oxidative damage with the involvement of mitophagy[J]. Photochem Photobiol, 2024, 100(3): 604-621. DOI: 10.1111/php.13863.
|
13. |
de Oliveira Dias JR, Rodrigues EB, Maia M, et al. Cytokines in neovascular age-related macular degeneration: fundamentals of targeted combination therapy[J]. Br J Ophthalmol, 2011, 95(12): 1631-1637. DOI: 10.1136/bjo.2010.186361.
|
14. |
Kim YR, Baek JI, Lee KY, et al. Berberine chloride protects cochlear hair cells from aminoglycoside-induced ototoxicity by reducing the accumulation of mitochondrial reactive oxygen species[J]. Free Radic Biol Med, 2023, 204: 177-183. DOI: 10.1016/j.freeradbiomed.2023.04.017.
|
15. |
Yang YJ, Wang Y, Deng Y, et al. Lycium barbarum polysaccharides regulating miR-181/Bcl-2 decreased autophagy of retinal pigment epithelium with oxidative stress[J/OL]. Oxid Med Cell Longev, 2023, 2023: 9554457[2023-01-25]. https://pubmed.ncbi.nlm.nih.gov/36743699/. DOI: 10.1155/2023/9554457.
|
16. |
Zhou L, Li Y, You J, et al. Salmonella spvC gene suppresses macrophage/neutrophil antibacterial defense mediated by gasdermin D[J]. Inflamm Res, 2024, 73(1): 19-33. DOI: 10.1007/s00011-023-01818-9.
|
17. |
Kaufmann M, Han Z. RPE melanin and its influence on the progression of AMD[J/OL]. Ageing Res Rev, 2024, 99: 102358[2024-06-01]. https://pubmed.ncbi.nlm.nih.gov/38830546/. DOI: 10.1016/j.arr.2024.102358.
|
18. |
Romero-Vazquez S, Llorens V, Soler-Boronat A, et al. Interlink between inflammation and oxidative stress in age-related macular degeneration: role of complement factor H[J/OL]. Biomedicines, 2021, 9(7): 763[2021-06-30]. https://pubmed.ncbi.nlm.nih.gov/34209418/. DOI: 10.3390/biomedicines9070763.
|
19. |
Li J, Ren Y, Li H, et al. Rac1 overexpression promotes Treg-derived cytokines to mediate choroidal neovascularization in wet age-related macular degeneration[J/OL]. Braz J Med Biol Res, 2025, 58: e14187[2025-03-03]. https://pubmed.ncbi.nlm.nih.gov/40053038/. DOI: 10.1590/1414-431X2024e14187.
|
20. |
Luo T, Li C, Zhou L, et al. M. Protein acetylation in age-related macular degeneration: mechanisms, roles, and therapeutic perspectives[J/OL]. Invest Ophthalmol Vis Sci, 2025, 66 (5): 30[2025-05-01]. https://pubmed.ncbi.nlm.nih.gov/40402519/. DOI: 10.1167/iovs.66.5.30.
|
21. |
Lee JJ, Chang-Chien GP, Lin S, et al. 5-Lipoxygenase inhibition protects retinal pigment epithelium from sodium iodate-induced ferroptosis and prevents retinal degeneration[J/OL]. Oxid Med Cell Longev, 2022, 2022: 1792894[2022-02-23]. https://pubmed.ncbi.nlm.nih.gov/35251467/. DOI: 10.1155/2022/1792894.
|
22. |
Kozhevnikova OS, Fursova AZ, Derbeneva AS, et al. Pharmacogenetic association between allelic variants of the autophagy-related genes and anti-vascular endothelial growth factor treatment response in neovascular age-related macular degeneration[J/OL]. Biomedicines, 2023, 11(11): 3079[2023-11-01]. https://pubmed.ncbi.nlm.nih.gov/38001910/. DOI: 10.3390/biomedicines11113079.
|
23. |
Han B, Lv Z, Han X, et al. Harmful effects of inorganic mercury exposure on kidney cells: mitochondrial dynamics disorder and excessive oxidative stress[J]. Biol Trace Elem Res, 2022, 200(4): 1591-1597. DOI: 10.1007/s12011-021-02766-3.
|
24. |
Meng R, Sun Z, Chi R, et al. Overexpression of Parkin promotes the protective effect of mitochondrial autophagy on the lung of rats with exertional heatstroke[J]. J Intensive Med, 2025, 5(1): 89-99. DOI: 10.1016/j.jointm.2024.07.004.
|
25. |
Hu T, Wu C, Jian W, et al. Effect of PINK1 and Parkin gene silencing on sodium arsenite-induced mitophagy in normal rat liver cells (BRL-3A)[J]. Toxicol Res (Camb), 2022, 11(1): 52-59. DOI: 10.1093/toxres/tfab110.
|
26. |
Yao Z, Li X, Wang W, et al. Corn peptides attenuate non-alcoholic fatty liver disease via PINK1/Parkin-mediated mitochondrial autophagy[J/OL]. Food Nutr Res, 2023, 29: 67[2023-09-29]. https://pubmed.ncbi.nlm.nih.gov/37808204/. DOI: 10.29219/fnr.v67.9547.
|
27. |
Boese EA, Jain N, Jia Y, et al. Characterization of chorioretinopathy associated with mitochondrial trifunctional protein disorders: long-term follow-up of 21 cases[J]. Ophthalmology, 2016, 123(10): 2183-2195. DOI: 10.1016/j.ophtha.2016.06.048.
|
28. |
Lee J, Xu Y, Saidi L, et al. Abnormal triaging of misfolded proteins by adult neuronal ceroid lipofuscinosis-associated DNAJC5/CSPalpha mutants causes lipofuscin accumulation[J/OL]. Autophagy, 2023, 19(1): 204-223[2022-04-20]. https://pubmed.ncbi.nlm.nih.gov/35443826/. DOI: 10.1080/15548627.2022.2065618.
|
29. |
Srivastava V, Zelmanovich V, Shukla V, et al. Distinct designer diamines promote mitophagy, and thereby enhance healthspan in C. elegans and protect human cells against oxidative damage[J]. Autophagy, 2023, 19(2): 474-504. DOI: 10.1080/15548627.2022.2078069.
|
30. |
Monteiro LB, Davanzo GG, de Aguiar CF, et al. Using flow cytometry for mitochondrial assays[J/OL]. MethodsX, 2020, 7: 100938[2020-05-28]. https://pubmed.ncbi.nlm.nih.gov/32551241/. DOI: 10.1016/j.mex.2020.100938.
|