1. |
Mane R, Chouhan T, Guan C. BCI for stroke rehabilitation: motor and beyond. J Neural Eng, 2020, 17(4): 041001.
|
2. |
Wolpaw J R, Bedlack R S, Reda D J, et al. Independent home use of a brain-computer interface by people with amyotrophic lateral sclerosis. Neurology, 2018, 91(3): e258-e267.
|
3. |
Shi N, Wang L, Chen Y, et al. Steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) of Chinese speller for a patient with amyotrophic lateral sclerosis: A case report. J Neurorestoratology, 2020, 8(1): 40-52.
|
4. |
Guo N, Wang X, Duanmu D, et al. SSVEP-based brain computer interface controlled soft robotic glove for post-stroke hand function rehabilitation. IEEE Trans Neural Syst Rehabil Eng, 2022, 30: 1737-1744.
|
5. |
Combaz A, Chatelle C, Robben A, et al. A comparison of two spelling brain-computer interfaces based on visual P3 and SSVEP in locked-in syndrome. PLoS One, 2013, 8(9): e73691.
|
6. |
Chi Y M, Wang Y-T, Wang Y, et al. Dry and noncontact EEG sensors for mobile brain–computer interfaces. IEEE Trans Neural Syst Rehabil Eng, 2011, 20(2): 228-235.
|
7. |
吴正平, 魏欢, 赵靖, 等. 基于 SSVEP 的无线脑-机接口系统研究与实现. 中国生物医学工程学报, 2019, 38(1): 120-124.
|
8. |
Soleymanpour R, Patel C, Kim I. Non-contact wearable EEG sensors for SSVEP-based brain computer interface applications// 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu: IEEE, 2018: 2016-2019.
|
9. |
Zhu F, Jiang L, Dong G, et al. An open dataset for wearable ssvep-based brain-computer interfaces. Sensors, 2021, 21(4): 1256.
|
10. |
Huggins J E, Wren P A, Gruis K L. What would brain-computer interface users want? Opinions and priorities of potential users with amyotrophic lateral sclerosis. Amyotroph Lateral Scler, 2011, 12(5): 318-324.
|
11. |
Huggins J E, Moinuddin A A, Chiodo A E, et al. What would brain-computer interface users want: opinions and priorities of potential users with spinal cord injury. Arch Phys Med Rehabil, 2015, 96(3): S38-S45. e35.
|
12. |
Chen X, Wang Y, Nakanishi M, et al. High-speed spelling with a noninvasive brain-computer interface. Proc Natl Acad Sci U S A, 2015, 112(44): E6058-E6067.
|
13. |
Fiedler P, Mühle R, Griebel S, et al. Contact pressure and flexibility of multipin dry EEG electrodes. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(4): 750-757.
|
14. |
Gargiulo G, Calvo R A, Bifulco P, et al. A new EEG recording system for passive dry electrodes. Clin Neurophysiol, 2010, 121(5): 686-693.
|
15. |
Wong C M, Wang Z, Nakanishi M, et al. Online adaptation boosts SSVEP-based BCI performance. IEEE Trans Biomed Eng, 2021, 69(6): 2018-2028.
|
16. |
Lin Z, Zhang C, Wu W, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng, 2006, 53(12): 2610-2614.
|
17. |
Lao K F, Wong C M, Wang Z, et al. Learning prototype spatial filters for subject-independent SSVEP-based brain-computer interface// 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Miyazaki: IEEE, 2018: 485-490.
|
18. |
Wong C M, Wan F, Wang B, et al. Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs. J Neural Eng, 2020, 17(1): 016026.
|
19. |
Liu B, Huang X, Wang Y, et al. BETA: A large benchmark database toward SSVEP-BCI application. Front Neurosci, 2020, 14: 627.
|
20. |
Chen X, Wang Y, Gao S, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface. J Neural Eng, 2015, 12(4): 046008.
|
21. |
Wang Y, Chen X, Gao X, et al. A benchmark dataset for SSVEP-based brain–computer interfaces. IEEE Trans Neural Syst Rehabil Eng, 2016, 25(10): 1746-1752.
|
22. |
Mu J, Liu S, Burkitt A N, et al. Multi-frequency steady-state visual evoked potential dataset. Sci Data, 2024, 11(1): 26.
|
23. |
Hsu H-T, Shyu K-K, Hsu C-C, et al. Phase-approaching stimulation sequence for SSVEP-based BCI: a practical use in VR/AR HMD. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 2754-2764.
|
24. |
Ge S, Jiang Y, Zhang M, et al. SSVEP-based brain-computer interface with a limited number of frequencies based on dual-frequency biased coding. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 760-769.
|
25. |
Acampora G, Trinchese P, Vitiello A. A dataset of EEG signals from a single-channel SSVEP-based brain computer interface. Data Brief, 2021, 35: 106826.
|
26. |
Dong Y, Tian S. A large database towards user-friendly SSVEP-based BCI. Brain Sci Adv, 2023, 9(4): 297-309.
|
27. |
Zerafa R, Camilleri T, Falzon O, et al. A comparison of a broad range of EEG acquisition devices–is there any difference for SSVEP BCIs?. Brain-Comput Interfaces, 2018, 5(4): 121-131.
|
28. |
Li X, Wang J, Cao X, et al. Evaluation of an online SSVEP-BCI with fast system setup. J Neurorestoratology, 2024, 12(2): 100122.
|
29. |
Kappenman E S, Luck S. The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology, 2010, 47(5): 888-904.
|
30. |
Wang Y, Gao X, Hong B, et al. Brain-computer interfaces based on visual evoked potentials. IEEE Eng Med Biol Mag, 2008, 27(5): 64-71.
|
31. |
Marx E, Benda M, Volosyak I. Optimal electrode positions for an SSVEP-based BCI//2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). Bari, Italy: IEEE, 2019: 2731-2736.
|
32. |
Diez P F, Mut V, Laciar E, et al. A comparison of monopolar and bipolar EEG recordings for SSVEP detection//2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Buenos Aires, Argentina: IEEE, 2010: 5803-5806.
|
33. |
Tang Z, Wang Y, Dong G, et al. Learning to control an SSVEP-based BCI speller in naïve subjects//2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Jeju, South Korea: IEEE, 2017: 1934-1937.
|