1. |
Hagihara M, Kato H, Yamashita M, et al. Lung cancer progression alters lung and gut microbiomes and lipid metabolism. Heliyon, 2023, 10(1): e23509.
|
2. |
Leiter A, Veluswamy R R, Wisnivesky J P. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol, 2023, 20(9): 624-639.
|
3. |
Liang B, Lu X, Liu L, et al. Synergizing the interaction of single nucleotide polymorphisms with dosiomics features to build a dual-omics model for the prediction of radiation pneumonitis. Radiother Oncol, 2024, 196: 110261.
|
4. |
徐倩文, 朱巍, 郝志强. 热疗在放射性肺炎中的研究进展. 中国现代医生, 2024, 62(1): 111-113.
|
5. |
张瑞军. 肺癌放射治疗所致急性放射性肺炎的临床治疗分析. 中文科技期刊数据库(全文版)医药卫生, 2023(1): 86-89 .
|
6. |
Ren G, Huang Y-H, Zhu J, et al. Medical Image Synthesis. Boca Raton: CRC Press, 2024: 71-88.
|
7. |
Gu J, Qiu Q, Zhu J, et al. Deep learning-based combination of [18F]-FDG PET and CT images for producing pulmonary perfusion image. Med Phys, 2023, 50(12): 7779-7790.
|
8. |
Gaudreault M, Korte J, Bucknell N, et al. Comparison of dual-energy CT with positron emission tomography for lung perfusion imaging in patients with non-small cell lung cancer. Phys Med Biol, 2023, 68(3): 035015.
|
9. |
Bohr C. Ueber die lungenathmung. Skand Arch Physiol, 1891, 2(1): 236-268 .
|
10. |
Jeong Y H, Lee H, Jang H J, et al. Predicting postoperative lung function using ventilation SPECT/CT in patients with lung cancer. J Thorac Dis, 2024, 16(2): 1054-1062.
|
11. |
Huang Y S, Chen J L Y, Lan H T, et al. Xenon-enhanced ventilation computed tomography for functional lung avoidance radiation therapy in patients with lung cancer. Int J Radiat Oncol Biol Phys, 2023, 115(2): 356-365.
|
12. |
Greffier J, Villani N, Defez D, et al. Spectral CT imaging: technical principles of dual-energy CT and multi-energy photon-counting CT. Diagn Interv Imaging, 2023, 104(4): 167-177.
|
13. |
Wu Y, Li J, Ding L, et al. Differentiation of pathological subtypes and Ki-67 and TTF-1 expression by dual-energy CT (DECT) volumetric quantitative analysis in non-small cell lung cancer. Cancer Imaging, 2024, 24(1): 146.
|
14. |
Yamamoto T, Kabus S, Bal M, et al. Four-dimensional computed tomography ventilation image-guided lung functional avoidance radiation therapy: A single-arm prospective pilot clinical trial. Int J Radiat Oncol Biol Phys, 2023, 115(5): 1144-1154.
|
15. |
Bouchareb Y, Alsaadi A, Zabah J, et al. Technological advances in SPECT and SPECT/CT imaging. Diagnostics (Basel), 2024, 14(13): 1431.
|
16. |
Aldosary G. Four-dimensional computed tomography (4DCT) in radiation oncology: A practical overview. Curr Radiol Rep, 2024, 12(7): 65-76.
|
17. |
Baschnagel A M, Flakus M J, Wallat E M, et al. A phase 2 randomized clinical trial evaluating 4-dimensional computed tomography ventilation-based functional lung avoidance radiation therapy for non-small cell lung cancer. Int J Radiat Oncol Biol Phys, 2024, 119(5): 1393-1402.
|
18. |
Flakus M J, Kent S P, Wallat E M, et al. Metrics of dose to highly ventilated lung are predictive of radiation-induced pneumonitis in lung cancer patients. Radiother Oncol, 2023, 182: 109553.
|
19. |
Thor M, Lee C, Sun L, et al. An 18F-FDG PET/CT and mean lung dose model to predict early radiation pneumonitis in stage III non-small cell lung cancer patients treated with chemoradiation and immunotherapy. J Nucl Med, 2024, 65(4): 520-526.
|
20. |
Niu L, Chu X, Yang X, et al. A multiomics approach-based prediction of radiation pneumonia in lung cancer patients: impact on survival outcome. J Cancer Res Clin Oncol, 2023, 149(11): 8923-8934.
|
21. |
Karmali D, Sowho M, Bose S, et al. Functional imaging for assessing regional lung ventilation in preclinical and clinical research. Front Med (Lausanne), 2023, 10: 1160292.
|
22. |
钟文静, 李英, 崔海霞. 基于4DCT的肺功能成像在肺部肿瘤放射治疗中的应用进展. 中华放射肿瘤学杂志, 2023, 32(5): 481-487.
|
23. |
Castillo R, Castillo E, Martinez J, et al. Ventilation from four-dimensional computed tomography: density versus Jacobian methods. Phys Med Biol, 2010, 55(16): 4661-4685.
|
24. |
Du K, Bayouth J E, Cao K, et al. Reproducibility of registration‐based measures of lung tissue expansion. Med Phys, 2012, 39(3): 1595-1608.
|
25. |
Zhang G Q, Zhang S X, Yu H, et al. Three-dimensional pulmonary ventilation imaging based on four-dimensional computed tomography at peak-exhale and peak-inhale phases. Chin J Tissue Eng Res, 2012, 16(52): 9807-9812.
|
26. |
Li M, Castillo E, Zheng X L, et al. Modeling lung deformation: a combined deformable image registration method with spatially varying Young's modulus estimates. Med Phys, 2013, 40(8): 081902.
|
27. |
Kipritidis J, Hofman M S, Siva S, et al. Estimating lung ventilation directly from 4D CT Hounsfield unit values. Med Phys, 2016, 43(1): 33-43.
|
28. |
Hegi‐Johnson F, Keall P, Barber J, et al. Evaluating the accuracy of 4D‐CT ventilation imaging: first comparison with Technegas SPECT ventilation. Med Phys, 2017, 44(8): 4045-4055.
|
29. |
Jafari P, Yaremko B P, Parraga G, et al. 4DCT ventilation map construction using biomechanics-based image registration and enhanced air segmentation// 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin: IEEE, 2019: 6263-6266.
|
30. |
Castillo E, Vinogradskiy Y, Castillo R. Robust HU‐based CT ventilation from an integrated mass conservation formulation. Med Phys, 2019, 46(11): 5036-5046.
|
31. |
Szmul A, Matin T, Gleeson F V, et al. Patch-based lung ventilation estimation using multi-layer supervoxels. Comput Med Imaging Graph, 2019, 74: 49-60.
|
32. |
薛鹏. 肺部 4D CT 图像配准及其在呼吸运动估计和通气量估计中的应用研究. 济南: 山东大学, 2021.
|
33. |
Zhong Y, Vinogradskiy Y, Chen L, et al. Technical note: Deriving ventilation imaging from 4DCT by deep convolutional neural network. Med Phys, 2019, 46(5): 2323-2329.
|
34. |
Liu Z, Miao J, Huang P, et al. A deep learning method for producing ventilation images from 4DCT: First comparison with technegas SPECT ventilation. Med Phys, 2020, 47(3): 1249-1257.
|
35. |
Porter E M, Myziuk N K, Quinn T J, et al. Synthetic pulmonary perfusion images from 4DCT for functional avoidance using deep learning. Phys Med Biol, 2021, 66(17): 175005.
|
36. |
Xue P, Fu Y, Zhang J, et al. Effective lung ventilation estimation based on 4D CT image registration and supervoxels. Biomed Signal Proces, 2023, 79(1): 104074.
|
37. |
Chen Z, Huang Y H, Kong F M, et al. A super-voxel-based method for generating surrogate lung ventilation images from CT. Front Physiol, 2023, 14: 1085158.
|
38. |
Hou Z, Kong Y, Wu J, et al. A deep learning model for translating CT to ventilation imaging: analysis of accuracy and impact on functional avoidance radiotherapy planning. Jpn J Radiol, 2024, 42(7): 765-776.
|
39. |
Ma P, Chen Z, Huang Y H, et al. Motion and anatomy dual aware lung ventilation imaging by integrating Jacobian map and average CT image using dual path fusion network. Med Phys, 2025, 52(1): 246-256.
|
40. |
Huang Y H, Li Z, Xiong T, et al. Constructing surrogate lung ventilation maps from 4-dimensional computed tomography-derived subregional respiratory dynamics. Int J Radiat Oncol Biol Phys, 2025, 121(5): 1328-1338.
|
41. |
Flakus M J, Wuschner A E, Wallat E M, et al. Quantifying robustness of CT-ventilation biomarkers to image noise. Front Physiol, 2023, 14: 1040028.
|
42. |
Guerrero T, Sanders K, Castillo E, et al. Dynamic ventilation imaging from four-dimensional computed tomography. Phys Med Biol, 2006, 51(4): 777-791.
|
43. |
Reinhardt J M, Ding K, Cao K, et al. Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation. Med Image Anal, 2008, 12(6): 752-763.
|
44. |
Vinogradskiy Y, Castillo R, Castillo E, et al. Use of 4-dimensional computed tomography-based ventilation imaging to correlate lung dose and function with clinical outcomes. Int J Radiat Oncol Biol Phys, 2013, 86(2): 366-371.
|
45. |
Patton T J, Gerard S E, Shao W, et al. Quantifying ventilation change due to radiation therapy using 4DCT Jacobian calculations. Med Phys, 2018, 45(10): 4483-4492.
|
46. |
Bai H, Li W, Xia Y, et al. Preliminary study on the effect of 4DCT-ventilation-weighted dose on the radiation induced pneumonia probability (RIPP). Dose Response, 2021, 19(3): 15593258211017753.
|
47. |
王静霄, 胡玲静, 韩文静, 等. 影像组学中特征选择方法的应用与进展. 国际医学放射学杂志, 2024, 47(6): 730-735.
|
48. |
Katsuta Y, Kadoya N, Mouri S, et al. Prediction of radiation pneumonitis with machine learning using 4D-CT based dose-function features. J Radiat Res, 2022, 63(1): 71-79.
|
49. |
Katsuta Y, Kadoya N, Kajikawa T, et al. Radiation pneumonitis prediction model with integrating multiple dose-function features on 4DCT ventilation images. Phys Med, 2023, 105: 102505.
|
50. |
Neupane T, Castillo E, Chen Y, et al. Predicting radiation pneumonitis with robust 4DCT-ventilation and 4DCT-perfusion imaging using prospective lung cancer clinical trial data. Int J Radiat Oncol Biol Phys, 2024, 120(2): S141.
|
51. |
Liu C, Liu H, Li Y, et al. Establishing a 4D-CT lung function related volumetric dose model to reduce radiation pneumonia. Sci Rep, 2024, 14(1): 12589.
|
52. |
Wallat E M, Wuschner A E, Flakus M J, et al. Predicting pulmonary ventilation damage after radiation therapy for nonsmall cell lung cancer using a ResNet generative adversarial network. Med Phys, 2023, 50(5): 3199-3209.
|
53. |
Zhang Z, Wang Z, Luo T, et al. Computed tomography and radiation dose images-based deep-learning model for predicting radiation pneumonitis in lung cancer patients after radiation therapy. Radiother Oncol, 2023, 182: 109581.
|
54. |
Bourbonne V, Da-Ano R, Jaouen V, et al. Radiomics analysis of 3D dose distributions to predict toxicity of radiotherapy for lung cancer. Radiother Oncol, 2021, 155: 144-150.
|
55. |
王郅翔, 王冠杰, 王清鑫, 等. 迁移学习在放射性肺炎预测中的预训练模型微调研究. 数字医学与健康, 2023, 1(2): 102-106.
|
56. |
刘倩倩, 姚升宇, 陈旭明, 等. 4D-CT呼吸信号采集方式对运动肿瘤靶区勾画的影响. 中国辐射卫生, 2023, 32(1): 35-39.
|