- 1. College of Electronic and Information Engineering, Hebei University, Baoding, Hebei 071002, P. R .China;
- 2. Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, P. R. China;
- 3. Department of Aviation Medicine, Xijing Hospital, Air Force Military Medical University, Xi’an 710032, P. R. China;
- 4. College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110016, P. R. China;
Hypertension is a major factor leading to cardiovascular events and death, and accurate blood pressure measurement is a fundamental means of evaluating blood pressure levels, achieving hypertension diagnosis, and observing antihypertensive efficacy. Compared to traditional brachial pressure, central aortic pressure (CAP) exhibits a stronger correlation with cardiovascular events. However, its non-invasive detection technology has not yet been widely adopted in clinical practice. In order to promote the clinical application of CAP and optimize blood pressure management, this article systematically summarizes the research progress of CAP estimation algorithms. These algorithms were categorized into three types: direct substitution methods, generalized model-based methods and personalized estimation methods. The characteristics and clinical adaptability of each algorithm were analyzed. The findings highlight that CAP estimation algorithms are moving towards personalization and non-linearity.
Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved
1. | 骆雷鸣, 任金霞. 高血压心脏形态、结构改变及危害. 中华保健医学杂志, 2021, 23(6): 555-560. |
2. | 马丽媛, 王增武, 樊静, 等. 《中国心血管健康与疾病报告2021》关于中国高血压流行和防治现状. 中国全科医学, 2022, 25(30): 3715-3720. |
3. | Cheng Y, Thijs L, Aparicio L S, et al. Risk stratification by cross-classification of central and brachial systolic blood pressure. Hypertension, 2022, 79(5): 1101-1111. |
4. | Huang Q, An D W, Aparicio L S, et al. An outcome-driven threshold for pulse pressure amplification. Hypertens Res, 2024, 47(9): 2478-2488. |
5. | Terentes-Printzios D, Gardikioti V, Vlachopoulos C. Central over peripheral blood pressure: an emerging issue in hypertension research. Heart Lung Cir, 2021, 30(11): 1667-1674. |
6. | Tan V B, Dean S P, Martin G S, et al. Comparison between cuff-based and invasive systolic blood pressure amplification. J Hypertens, 2022, 40(10): 2037-2044. |
7. | Kollias A, Lagou S, Zeniodi M E, et al. Association of central versus brachial blood pressure with target-organ damage: systematic review and meta-analysis. Hypertension, 2016, 67(1): 183-190. |
8. | Chi C, Yu X, Auckle R, et al. Hypertensive target organ damage is better associated with central than brachial blood pressure: The Northern Shanghai Study. J Clin Hypertens (Greenwich), 2017, 19(12): 1269-1275. |
9. | McEniery C M, Cockcroft J R, Roman M J, et al. Central blood pressure: current evidence and clinical importance. Eur Heart J, 2014, 35(26): 1719-1725. |
10. | Cheng Y, Xia J, Li Y, et al. Antihypertensive treatment and central arterial hemodynamics: a meta-analysis of randomized controlled trials. Front Physiol, 2021, 12: 762586. |
11. | Sharman J E, Marwick T H, Gilroy D, et al. Randomized trial of guiding hypertension management using central aortic blood pressure compared with best-practice care. Hypertension, 2013, 62(6): 1138-1145. |
12. | Mancia G, Kreutz R, Brunström M, et al. 2023 ESH guidelines for the management of arterial hypertension the task force for the management of arterial hypertension of the European Society of Hypertension endorsed by the European Renal Association (ERA) and the International Society of Hypertension (ISH). J Hypertens, 2023, 41(12): 1874-2071. |
13. | Bia D, Zócalo Y, Sánchez R, et al. Brachial blood pressure invasively and non-invasively obtained using oscillometry and applanation tonometry: impact of mean blood pressure equations and calibration schemes on agreement levels. J Cardiovasc Dev Dis, 2023, 10(2): 45. |
14. | Rowell L B, Brengelmann G L, Blackmon J R, et al. Disparities between aortic and peripheral pulse pressures induced by upright exercise and vasomotor changes in man. Circulation, 1968, 37(6): 954-964. |
15. | Nadège C, Catherine F, Kaveh J, et al. Estimated versus measured aortic stiffness: implications of diabetes, chronic kidney disease, sex and height. J Hypertens, 2024, 42(12): 2115-2121. |
16. | Salvi P, Valbusa F, Kearney-Schwartz A, et al. Non-invasive assessment of arterial stiffness: pulse wave velocity, pulse wave analysis and carotid cross-sectional distensibility: comparison between methods. J Clin Med, 2022, 11(8): 2225. |
17. | Paquin A, Werlang A, Coutinho T. The EVA (early vascular aging) study: association of central obesity with worse arterial health after preeclampsia. J Am Heart Assoc, 2023, 12(21): e031136. |
18. | Gallagher D, Adji A, O’Rourke M F. Validation of the transfer function technique for generating central from peripheral upper limb pressure waveform. Am J Hypertens, 2004, 17(11): 1059-1067. |
19. | Takazawa K, Kobayashi H, Kojima I, et al. Estimation of central aortic systolic pressure using late systolic inflection of radial artery pulse and its application to vasodilator therapy. J Hypertens, 2012, 30(5): 908-916. |
20. | Laugesen E, Svendsen A N, Vernstrøm L, et al. Feasibility of Arteriograph 24 for evaluation of 24-hour pulse wave velocity and central blood pressure in patients with type 2 diabetes and non-diabetic controls. Blood Press Monit, 2024, 29(2): 82-88. |
21. | Glenning J P, Sandhu K, Harrington H A, et al. Accuracy of the WatchBP Office Central as a Type 2 device for non-invasive estimation of central aortic blood pressure in children and adolescents. J Hum Hypertens, 2024, 38(12): 814-820. |
22. | Kwon A, Kim G H, Kim M S. Clinical implications of central blood pressure measured by radial tonometry and automated office blood pressure measured using automatic devices in cardiovascular diseases. Front Cardiovasc Med, 2022, 9: 906021. |
23. | Lowe A, Harrison W, El-Aklouk E, et al. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms. J Biomech, 2009, 42(13): 2111-2115. |
24. | Picone D S, Schultz M G, Armstrong M K, et al. Mean arterial pressure differences between cuff oscillometric and invasive blood pressure. Hypertens Res, 2025: 1-10. |
25. | Chio S-S, Urbina E M, LaPointe J, et al. Korotkoff sound versus oscillometric cuff sphygmomanometers: comparison between auscultatory and DynaPulse blood pressure measurements. J Am Soc Hypertens, 2011, 5(1): 12-20. |
26. | Sluyter J D, Hughes A D, Camargo Jr C A, et al. Identification of distinct arterial waveform clusters and a longitudinal evaluation of their clinical usefulness. Hypertension, 2019, 74(4): 921-928. |
27. | Aghilinejad A, Amlani F, Mazandarani S P, et al. Mechanistic insights on age-related changes in heart-aorta-brain hemodynamic coupling using a pulse wave model of the entire circulatory system. Am J Physiol-Heart C, 2023, 325(5): H1193-H1209. |
28. | O’Rourke M F, Avolio A P. Arterial transfer functions: background, applications and reservations. J Hypertens, 2008, 26(1): 8-10. |
29. | Chen C, Nevo E, Fetics B J, et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure validation of generalized transfer function. Circulation, 1997, 95(7): 1827-1836. |
30. | Hope S A, Meredith I T, Tay D, et al. ‘Generalizability’ of a radial-aortic transfer function for the derivation of central aortic waveform parameters. J Hypertens, 2007, 25(9): 1812-1820. |
31. | 姚阳. 基于传递函数的中心动脉压力波形动态重建; 沈阳: 东北大学, 2015. |
32. | 徐礼胜, 姜志豪, 姚阳, 等. 采样频率与数据长度对中心动脉波形重建的影响. 东北大学学报(自然科学版), 2019, 40(5): 625-629. |
33. | Narayan O, Casan J, Szarski M, et al. Estimation of central aortic blood pressure: a systematic meta-analysis of available techniques. J Hypertens, 2014, 32(9): 1727-1740. |
34. | Esposito C, Machado P, Cohen I S, et al. Comparing central aortic pressures obtained using a sphygmocor device to pressures obtained using a pressure catheter. Am J Hypertens, 2022, 35(5): 397-406. |
35. | Gaffey A E, Walenczyk K M, Schwartz J E, et al. Ecologically assessed sleep duration and arterial stiffness in healthy men and women. Psychosom Med, 2024, 86(9): 740-747. |
36. | Brett S E, Guilcher A, Clapp B, et al Estimating central systolic blood pressure during oscillometric determination of blood pressure: Proof of concept and validation by comparison with intra-aortic pressure recording and arterial tonometry. Blood Press Monit, 2012, 17(3): 132-136. |
37. | Walser M, Schlichtiger J, Dalla-Pozza R, et al. Oscillometric pulse wave velocity estimated via the Mobil-O-Graph shows excellent accuracy in children, adolescents and young adults: an invasive validation study. J Hypertens, 2023, 41(4): 597-607. |
38. | Sharman J E, Takeuchi F, Protogerou A, et al. Prospective relationships between left ventricular mass, brachial and central blood pressures in participants from the UK Biobank. J Hypertens, 2025, 43(4): 698-704. |
39. | Omboni S, Arystan A, Benczur B. Ambulatory monitoring of central arterial pressure, wave reflections, and arterial stiffness in patients at cardiovascular risk. J Hum Hypertens, 2022, 36(4): 352-363. |
40. | Wassertheurer S, Kropf J, Weber T, et al. A new oscillometric method for pulse wave analysis: comparison with a common tonometric method. J Hum Hypertens, 2010, 24(8): 498-504. |
41. | Kang J H, Lee D I, Kim S, et al. A comparison between central blood pressure values obtained by the Gaon system and the SphygmoCor system. Hypertens Res, 2012, 35(3): 329-333. |
42. | Aparicio L S, Huang Q F, Melgarejo J D, et al. The international database of central arterial properties for risk stratification: research objectives and baseline characteristics of participants. Am J Hypertens, 2022, 35(1): 54-64. |
43. | Butlin M, Qasem A, Avolio A P. Estimation of central aortic pressure waveform features derived from the brachial cuff volume displacement waveform// 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Montréal: IEEE, 2012: 2591-2594.. |
44. | Papaioannou T G, Karageorgopoulou T D, Sergentanis T N, et al. Accuracy of commercial devices and methods for noninvasive estimation of aortic systolic blood pressure a systematic review and meta-analysis of invasive validation studies. J Hypertens, 2016, 34(7): 1237-1248. |
45. | Sugawara R, Horinaka S, Yagi H, et al. Central blood pressure estimation by using N-point moving average method in the brachial pulse wave. Hypertens Res, 2015, 38(5): 336-341. |
46. | Xiao H, Butlin M, Qasem A, et al. N-point moving average: a special generalized transfer function method for estimation of central aortic blood pressure. IEEE T Bio-med Eng, 2018, 65(6): 1226-1234. |
47. | Shih Y T, Cheng H M, Sung S H, et al. Application of the N-point moving average method for brachial pressure waveform-derived estimation of central aortic systolic pressure. Hypertension, 2014, 63(4): 865-870. |
48. | Theilade S, Hansen T W, Joergensen C, et al. Tonometric devices for central aortic systolic pressure measurements in patients with type 1 diabetes: comparison of the BPro and SphygmoCor devices. Blood Press Monit, 2013, 18(3): 156-160. |
49. | Millasseau S, Agnoletti D. Non-invasive estimation of aortic blood pressures: a close look at current devices and methods. Curr pharm design, 2015, 21(6): 709-718. |
50. | Cremer A, Butlin M, Codjo L, et al. Determination of central blood pressure by a noninvasive method (brachial BP and QKD interval). J Hypertens, 2012, 30(8): 1533-1539. |
51. | Xiao H, Liu C, Zhang B. Reconstruction of central arterial pressure waveform based on CNN-BILSTM. Biomed Signal Proces, 2022, 74: 103513. |
52. | Liu W, Du S, Pang N, et al. Central aortic blood pressure waveform estimation based on temporal convolutional network. IEEE J Biomed Health, 2023, 27(7): 3622-3632. |
53. | Du S, Yang J, Sun G, et al. Aortic pressure waveform estimation based on variational mode decomposition and gated recurrent unit// 2023 Asian-Pacific Conference on Medical and Biological Engineering. Suzhou: Springer, 2023: 29-38. |
54. | 张良钰, 边天元, 徐礼胜. 冠脉狭窄对外周与中心动脉间传递函数的影响. 东北大学学报(自然科学版), 2018, 39(12): 1702-1707. |
55. | Hope S A, Tay D B, Meredith I T, et al. Comparison of generalized and gender-specific transfer functions for the derivation of aortic waveforms. Am J Physiolog-Heart C, 2002, 283(3): H1150-H1156. |
56. | Yao Y, Xu L, Sun Y, et al. Validation of an adaptive transfer function method to estimate the aortic pressure waveform. IEEE J Biomed Health, 2017, 21(6): 1599-1606. |
57. | Du S, Yao Y, Sun G, et al. Simultaneous adaption of the gain and phase of a generalized transfer function for aortic pressure waveform estimation. Comput Biol Med, 2022, 141: 105187. |
58. | Du S, Liu W, Yao Y, et al. Reconstruction of the aortic pressure waveform using a two-level adaptive transfer function strategy. Measurement, 2022, 204: 112111. |
59. | Magbool A, Bahloul M A, Ballal T, et al. Aortic blood pressure estimation: a hybrid machine-learning and cross-relation approach. Biomed Signal Proces, 2021, 68: 102762. |
60. | Hahn J, Reisner A, Asada H H. A blind approach to reconstruction of aortic blood pressure waveform using gray-box identification of multiple pressure transfer channels// 2006 American Control Conference. Minneapolis: IEEE, 2006: 3415-3420. |
61. | Liu W, Du S, Zhou S, et al. Noninvasive estimation of aortic pressure waveform based on simplified Kalman filter and dual peripheral artery pressure waveforms. Comput Meth Prog Bio, 2022, 219: 106760. |
62. | Patel A M, Li J K, Finegan B, et al. Aortic pressure estimation using blind identification approach on single input multiple output nonlinear wiener systems. IEEE T Bio-med Eng, 2018, 65(6): 1193-1200. |
63. | Bikia V, Pagoulatou S, Trachet B, et al. Noninvasive cardiac output and central systolic pressure from cuff-pressure and pulse wave velocity. IEEE J Biomed Health, 2020, 24(7): 1968-1981. |
64. | Zhou S, Xu L, Hao L, et al. A review on low-dimensional physics-based models of systemic arteries: application to estimation of central aortic pressure. Biomed Eng Online, 2019, 18(1): 41. |
65. | 王璐, 冯澍婷, 姚阳, 等. 基于“T-tube”模型的中心动脉脉搏波双通道盲辨识. 东北大学学报(自然科学版), 2015, 36(2): 199-203,212. |
66. | Du S, Yao Y, Sun G, et al. Personalized aortic pressure waveform estimation from brachial pressure waveform using an adaptive transfer function. Comput Biol Med, 2023, 155: 106654. |
67. | Harju J, Vehkaoja A, Kumpulainen P, et al. Comparison of non-invasive blood pressure monitoring using modified arterial applanation tonometry with intra-arterial measurement. J Clin Monit Comput, 2018, 32: 13-22. |
68. | Zhou S, Yao Y, Liu W, et al. Ultrasound-based method for individualized estimation of central aortic blood pressure from flow velocity and diameter. Comput Biol Med, 2022, 143: 105254. |
- 1. 骆雷鸣, 任金霞. 高血压心脏形态、结构改变及危害. 中华保健医学杂志, 2021, 23(6): 555-560.
- 2. 马丽媛, 王增武, 樊静, 等. 《中国心血管健康与疾病报告2021》关于中国高血压流行和防治现状. 中国全科医学, 2022, 25(30): 3715-3720.
- 3. Cheng Y, Thijs L, Aparicio L S, et al. Risk stratification by cross-classification of central and brachial systolic blood pressure. Hypertension, 2022, 79(5): 1101-1111.
- 4. Huang Q, An D W, Aparicio L S, et al. An outcome-driven threshold for pulse pressure amplification. Hypertens Res, 2024, 47(9): 2478-2488.
- 5. Terentes-Printzios D, Gardikioti V, Vlachopoulos C. Central over peripheral blood pressure: an emerging issue in hypertension research. Heart Lung Cir, 2021, 30(11): 1667-1674.
- 6. Tan V B, Dean S P, Martin G S, et al. Comparison between cuff-based and invasive systolic blood pressure amplification. J Hypertens, 2022, 40(10): 2037-2044.
- 7. Kollias A, Lagou S, Zeniodi M E, et al. Association of central versus brachial blood pressure with target-organ damage: systematic review and meta-analysis. Hypertension, 2016, 67(1): 183-190.
- 8. Chi C, Yu X, Auckle R, et al. Hypertensive target organ damage is better associated with central than brachial blood pressure: The Northern Shanghai Study. J Clin Hypertens (Greenwich), 2017, 19(12): 1269-1275.
- 9. McEniery C M, Cockcroft J R, Roman M J, et al. Central blood pressure: current evidence and clinical importance. Eur Heart J, 2014, 35(26): 1719-1725.
- 10. Cheng Y, Xia J, Li Y, et al. Antihypertensive treatment and central arterial hemodynamics: a meta-analysis of randomized controlled trials. Front Physiol, 2021, 12: 762586.
- 11. Sharman J E, Marwick T H, Gilroy D, et al. Randomized trial of guiding hypertension management using central aortic blood pressure compared with best-practice care. Hypertension, 2013, 62(6): 1138-1145.
- 12. Mancia G, Kreutz R, Brunström M, et al. 2023 ESH guidelines for the management of arterial hypertension the task force for the management of arterial hypertension of the European Society of Hypertension endorsed by the European Renal Association (ERA) and the International Society of Hypertension (ISH). J Hypertens, 2023, 41(12): 1874-2071.
- 13. Bia D, Zócalo Y, Sánchez R, et al. Brachial blood pressure invasively and non-invasively obtained using oscillometry and applanation tonometry: impact of mean blood pressure equations and calibration schemes on agreement levels. J Cardiovasc Dev Dis, 2023, 10(2): 45.
- 14. Rowell L B, Brengelmann G L, Blackmon J R, et al. Disparities between aortic and peripheral pulse pressures induced by upright exercise and vasomotor changes in man. Circulation, 1968, 37(6): 954-964.
- 15. Nadège C, Catherine F, Kaveh J, et al. Estimated versus measured aortic stiffness: implications of diabetes, chronic kidney disease, sex and height. J Hypertens, 2024, 42(12): 2115-2121.
- 16. Salvi P, Valbusa F, Kearney-Schwartz A, et al. Non-invasive assessment of arterial stiffness: pulse wave velocity, pulse wave analysis and carotid cross-sectional distensibility: comparison between methods. J Clin Med, 2022, 11(8): 2225.
- 17. Paquin A, Werlang A, Coutinho T. The EVA (early vascular aging) study: association of central obesity with worse arterial health after preeclampsia. J Am Heart Assoc, 2023, 12(21): e031136.
- 18. Gallagher D, Adji A, O’Rourke M F. Validation of the transfer function technique for generating central from peripheral upper limb pressure waveform. Am J Hypertens, 2004, 17(11): 1059-1067.
- 19. Takazawa K, Kobayashi H, Kojima I, et al. Estimation of central aortic systolic pressure using late systolic inflection of radial artery pulse and its application to vasodilator therapy. J Hypertens, 2012, 30(5): 908-916.
- 20. Laugesen E, Svendsen A N, Vernstrøm L, et al. Feasibility of Arteriograph 24 for evaluation of 24-hour pulse wave velocity and central blood pressure in patients with type 2 diabetes and non-diabetic controls. Blood Press Monit, 2024, 29(2): 82-88.
- 21. Glenning J P, Sandhu K, Harrington H A, et al. Accuracy of the WatchBP Office Central as a Type 2 device for non-invasive estimation of central aortic blood pressure in children and adolescents. J Hum Hypertens, 2024, 38(12): 814-820.
- 22. Kwon A, Kim G H, Kim M S. Clinical implications of central blood pressure measured by radial tonometry and automated office blood pressure measured using automatic devices in cardiovascular diseases. Front Cardiovasc Med, 2022, 9: 906021.
- 23. Lowe A, Harrison W, El-Aklouk E, et al. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms. J Biomech, 2009, 42(13): 2111-2115.
- 24. Picone D S, Schultz M G, Armstrong M K, et al. Mean arterial pressure differences between cuff oscillometric and invasive blood pressure. Hypertens Res, 2025: 1-10.
- 25. Chio S-S, Urbina E M, LaPointe J, et al. Korotkoff sound versus oscillometric cuff sphygmomanometers: comparison between auscultatory and DynaPulse blood pressure measurements. J Am Soc Hypertens, 2011, 5(1): 12-20.
- 26. Sluyter J D, Hughes A D, Camargo Jr C A, et al. Identification of distinct arterial waveform clusters and a longitudinal evaluation of their clinical usefulness. Hypertension, 2019, 74(4): 921-928.
- 27. Aghilinejad A, Amlani F, Mazandarani S P, et al. Mechanistic insights on age-related changes in heart-aorta-brain hemodynamic coupling using a pulse wave model of the entire circulatory system. Am J Physiol-Heart C, 2023, 325(5): H1193-H1209.
- 28. O’Rourke M F, Avolio A P. Arterial transfer functions: background, applications and reservations. J Hypertens, 2008, 26(1): 8-10.
- 29. Chen C, Nevo E, Fetics B J, et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure validation of generalized transfer function. Circulation, 1997, 95(7): 1827-1836.
- 30. Hope S A, Meredith I T, Tay D, et al. ‘Generalizability’ of a radial-aortic transfer function for the derivation of central aortic waveform parameters. J Hypertens, 2007, 25(9): 1812-1820.
- 31. 姚阳. 基于传递函数的中心动脉压力波形动态重建; 沈阳: 东北大学, 2015.
- 32. 徐礼胜, 姜志豪, 姚阳, 等. 采样频率与数据长度对中心动脉波形重建的影响. 东北大学学报(自然科学版), 2019, 40(5): 625-629.
- 33. Narayan O, Casan J, Szarski M, et al. Estimation of central aortic blood pressure: a systematic meta-analysis of available techniques. J Hypertens, 2014, 32(9): 1727-1740.
- 34. Esposito C, Machado P, Cohen I S, et al. Comparing central aortic pressures obtained using a sphygmocor device to pressures obtained using a pressure catheter. Am J Hypertens, 2022, 35(5): 397-406.
- 35. Gaffey A E, Walenczyk K M, Schwartz J E, et al. Ecologically assessed sleep duration and arterial stiffness in healthy men and women. Psychosom Med, 2024, 86(9): 740-747.
- 36. Brett S E, Guilcher A, Clapp B, et al Estimating central systolic blood pressure during oscillometric determination of blood pressure: Proof of concept and validation by comparison with intra-aortic pressure recording and arterial tonometry. Blood Press Monit, 2012, 17(3): 132-136.
- 37. Walser M, Schlichtiger J, Dalla-Pozza R, et al. Oscillometric pulse wave velocity estimated via the Mobil-O-Graph shows excellent accuracy in children, adolescents and young adults: an invasive validation study. J Hypertens, 2023, 41(4): 597-607.
- 38. Sharman J E, Takeuchi F, Protogerou A, et al. Prospective relationships between left ventricular mass, brachial and central blood pressures in participants from the UK Biobank. J Hypertens, 2025, 43(4): 698-704.
- 39. Omboni S, Arystan A, Benczur B. Ambulatory monitoring of central arterial pressure, wave reflections, and arterial stiffness in patients at cardiovascular risk. J Hum Hypertens, 2022, 36(4): 352-363.
- 40. Wassertheurer S, Kropf J, Weber T, et al. A new oscillometric method for pulse wave analysis: comparison with a common tonometric method. J Hum Hypertens, 2010, 24(8): 498-504.
- 41. Kang J H, Lee D I, Kim S, et al. A comparison between central blood pressure values obtained by the Gaon system and the SphygmoCor system. Hypertens Res, 2012, 35(3): 329-333.
- 42. Aparicio L S, Huang Q F, Melgarejo J D, et al. The international database of central arterial properties for risk stratification: research objectives and baseline characteristics of participants. Am J Hypertens, 2022, 35(1): 54-64.
- 43. Butlin M, Qasem A, Avolio A P. Estimation of central aortic pressure waveform features derived from the brachial cuff volume displacement waveform// 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Montréal: IEEE, 2012: 2591-2594..
- 44. Papaioannou T G, Karageorgopoulou T D, Sergentanis T N, et al. Accuracy of commercial devices and methods for noninvasive estimation of aortic systolic blood pressure a systematic review and meta-analysis of invasive validation studies. J Hypertens, 2016, 34(7): 1237-1248.
- 45. Sugawara R, Horinaka S, Yagi H, et al. Central blood pressure estimation by using N-point moving average method in the brachial pulse wave. Hypertens Res, 2015, 38(5): 336-341.
- 46. Xiao H, Butlin M, Qasem A, et al. N-point moving average: a special generalized transfer function method for estimation of central aortic blood pressure. IEEE T Bio-med Eng, 2018, 65(6): 1226-1234.
- 47. Shih Y T, Cheng H M, Sung S H, et al. Application of the N-point moving average method for brachial pressure waveform-derived estimation of central aortic systolic pressure. Hypertension, 2014, 63(4): 865-870.
- 48. Theilade S, Hansen T W, Joergensen C, et al. Tonometric devices for central aortic systolic pressure measurements in patients with type 1 diabetes: comparison of the BPro and SphygmoCor devices. Blood Press Monit, 2013, 18(3): 156-160.
- 49. Millasseau S, Agnoletti D. Non-invasive estimation of aortic blood pressures: a close look at current devices and methods. Curr pharm design, 2015, 21(6): 709-718.
- 50. Cremer A, Butlin M, Codjo L, et al. Determination of central blood pressure by a noninvasive method (brachial BP and QKD interval). J Hypertens, 2012, 30(8): 1533-1539.
- 51. Xiao H, Liu C, Zhang B. Reconstruction of central arterial pressure waveform based on CNN-BILSTM. Biomed Signal Proces, 2022, 74: 103513.
- 52. Liu W, Du S, Pang N, et al. Central aortic blood pressure waveform estimation based on temporal convolutional network. IEEE J Biomed Health, 2023, 27(7): 3622-3632.
- 53. Du S, Yang J, Sun G, et al. Aortic pressure waveform estimation based on variational mode decomposition and gated recurrent unit// 2023 Asian-Pacific Conference on Medical and Biological Engineering. Suzhou: Springer, 2023: 29-38.
- 54. 张良钰, 边天元, 徐礼胜. 冠脉狭窄对外周与中心动脉间传递函数的影响. 东北大学学报(自然科学版), 2018, 39(12): 1702-1707.
- 55. Hope S A, Tay D B, Meredith I T, et al. Comparison of generalized and gender-specific transfer functions for the derivation of aortic waveforms. Am J Physiolog-Heart C, 2002, 283(3): H1150-H1156.
- 56. Yao Y, Xu L, Sun Y, et al. Validation of an adaptive transfer function method to estimate the aortic pressure waveform. IEEE J Biomed Health, 2017, 21(6): 1599-1606.
- 57. Du S, Yao Y, Sun G, et al. Simultaneous adaption of the gain and phase of a generalized transfer function for aortic pressure waveform estimation. Comput Biol Med, 2022, 141: 105187.
- 58. Du S, Liu W, Yao Y, et al. Reconstruction of the aortic pressure waveform using a two-level adaptive transfer function strategy. Measurement, 2022, 204: 112111.
- 59. Magbool A, Bahloul M A, Ballal T, et al. Aortic blood pressure estimation: a hybrid machine-learning and cross-relation approach. Biomed Signal Proces, 2021, 68: 102762.
- 60. Hahn J, Reisner A, Asada H H. A blind approach to reconstruction of aortic blood pressure waveform using gray-box identification of multiple pressure transfer channels// 2006 American Control Conference. Minneapolis: IEEE, 2006: 3415-3420.
- 61. Liu W, Du S, Zhou S, et al. Noninvasive estimation of aortic pressure waveform based on simplified Kalman filter and dual peripheral artery pressure waveforms. Comput Meth Prog Bio, 2022, 219: 106760.
- 62. Patel A M, Li J K, Finegan B, et al. Aortic pressure estimation using blind identification approach on single input multiple output nonlinear wiener systems. IEEE T Bio-med Eng, 2018, 65(6): 1193-1200.
- 63. Bikia V, Pagoulatou S, Trachet B, et al. Noninvasive cardiac output and central systolic pressure from cuff-pressure and pulse wave velocity. IEEE J Biomed Health, 2020, 24(7): 1968-1981.
- 64. Zhou S, Xu L, Hao L, et al. A review on low-dimensional physics-based models of systemic arteries: application to estimation of central aortic pressure. Biomed Eng Online, 2019, 18(1): 41.
- 65. 王璐, 冯澍婷, 姚阳, 等. 基于“T-tube”模型的中心动脉脉搏波双通道盲辨识. 东北大学学报(自然科学版), 2015, 36(2): 199-203,212.
- 66. Du S, Yao Y, Sun G, et al. Personalized aortic pressure waveform estimation from brachial pressure waveform using an adaptive transfer function. Comput Biol Med, 2023, 155: 106654.
- 67. Harju J, Vehkaoja A, Kumpulainen P, et al. Comparison of non-invasive blood pressure monitoring using modified arterial applanation tonometry with intra-arterial measurement. J Clin Monit Comput, 2018, 32: 13-22.
- 68. Zhou S, Yao Y, Liu W, et al. Ultrasound-based method for individualized estimation of central aortic blood pressure from flow velocity and diameter. Comput Biol Med, 2022, 143: 105254.