1. |
Kamoen A, Dermaut S S S L, Verbeeck R. The clinical significance of error measurement in the interpretation of treatment results. Eur J Orthod, 2001, 23(5): 569-578.
|
2. |
Silveira H L, Silveira H E. Reproducibility of cephalometric measurements made by three radiology clinics. Angle Orthod, 2006, 76(3): 394-399.
|
3. |
Albarakati S F, Kula K S, Ghoneima A A. The reliability and reproducibility of cephalometric measurements: a comparison of conventional and digital methods. Dentomaxillofac Radiol, 2012, 41(1): 11-17.
|
4. |
Chen Runnan, Ma Yuexin, Chen Nenglun, et al. Cephalometric landmark detection by attentive feature pyramid fusion and regression-voting// Medical Image Computing and Computer Assisted Intervention (MICCAI). Cham: Springer, 2019: 873-881.
|
5. |
Devereux L, Moles D, Cunningham S J, et al. How important are lateral cephalometric radiographs in orthodontic treatment planning? Amer J of Orth and Dent Orth, 2011, 139(2): 175-181.
|
6. |
Indermun S, Shaik S, Nyirenda C, et al. Human examination and artificial intelligence in cephalometric landmark detection-is AI ready to take over? Dentomaxillofac Radiol, 2023, 52(6): 20220362.
|
7. |
Juneja M, Garg P, Kaur R, et al. A review on cephalometric landmark detection techniques. Biomed Signal Process Control, 2021, 66: 102486.
|
8. |
Qian Jiahong, Luo Weizhi, Cheng Ming, et al. CephaNN: A multi-head attention network for cephalometric landmark detection. IEEE Access, 2020, 8: 112633-112641.
|
9. |
Ao Y, Wu H. Feature aggregation and refinement network for 2d anatomical landmark detection. J of Dig Imag, 2023, 36(2): 547-561.
|
10. |
Huang K, Feng F. An intelligent shooting reward learning network scheme for medical image landmark detection. Appl Sci, 2022, 12: 10190.
|
11. |
Song Y, Qiao X, Iwamoto Y, et al. Automatic cephalometric landmark detection on X-ray images using a deep-learning method. Appl Sci, 2020, 10: 2547.
|
12. |
Zhong Z, Li J, Zhan Z, et al. An attention-guided deep regression model for landmark detection in cephalograms// Medical Image Computing and Computer Assisted Intervention (MICCAI). Cham: Springer, 2019: 540-548.
|
13. |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation// Medical Image Computing and Computer-Assisted Intervention (MICCAI). Cham: Springer, 2015, 9351: 5-16.
|
14. |
Shaker A, Maaz M, Rasheed H, et al. UNETR++: delving into efficient and accurate 3d medical image segmentation. IEEE Trans Med Imaging, 2024, 43(9): 3377-3390.
|
15. |
Ye Ziyang, Yu Haiyang, Li Bin. Uncertainty-aware u-net for medical landmark detection. Arxiv preprint, 2023: 2303.10349v1.
|
16. |
Song Y, Qiao X, Iwamoto Y, et al. An efficient deep learning based coarse-to-fine cephalometric landmark detection method. IEICE Trans Info Sys, 2021, 104(8): 1359-1366.
|
17. |
Zeng Minmin, Yan Zhenlei, Liu Shuai, et al. Cascaded convolutional networks for automatic cephalometric landmark detection. Med Ima Ana, 2021, 68: 101904.
|
18. |
Zhang K, Zhang Z, Li Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Sig Proc Let, 2016, 23(10): 1499-1503.
|
19. |
Gilmour L, Ray N. Locating cephalometric X-ray landmarks with foveated pyramid attention// International Conference on Medical Imaging with Deep Learning (MIDL). Montreal: PMLR, 2020: 262-276.
|
20. |
Yao Jie, Zeng Wei, He Tao, et al. Automatic localization of cephalometric landmarks based on convolutional neural network. Amer J Orth Dent Orth, 2022, 161(3): 250-259.
|
21. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need// Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS). New York: Curran Associates Inc, 2017: 6000-6010.
|
22. |
Yang S, Quan Z, Nie M, et al. Transpose: Keypoint localization via transformer// IEEE/CVF International Conference on Computer Vision (ICCV). Montreal: IEEE, 2021: 11782-11792.
|
23. |
Yuan Yuhui, Fu Rao, Huang Lang, et al. Hrformer: High-resolution transformer for dense prediction// Proceedings of the 35th International Conference on Neural Information Processing Systems (NIPS). New York: Curran Associates Inc, 2021: 7281-7293.
|
24. |
Mao Weian, Ge Yongtao, Shen Chunhua, et al. Poseur: Direct human pose regression with Transformers// Computer Vision-ECCV 2022: 17th European Conference. Cham: Springer, 2022, 6: 72-88.
|
25. |
Li Hui, Guo Zidong, Rhee Seon-Min, et al. Towards accurate facial landmark detection via cascaded transformers// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 4176-4185.
|
26. |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale// International Conference on Learning Representations (ICLR). Vienna: ICLR, 2021: 1-21.
|
27. |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
|
28. |
Zhao Ting, Wu Xiangqian. Pyramid feature attention network for saliency detection// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE/CVF, 2019: 3080-3089.
|
29. |
Devlin J, Chang M W, Lee K, et al. BERT: Pre-training of deep bidirectional Transformers for language understanding// Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis: ACL Anthology, 2019, 1: 4171-4186.
|
30. |
Zhang Hang, Zhang Jinwei, Li Chao, et al. All-net: Anatomical information lesion-wise loss function integrated into neural network for multiple sclerosis lesion segmentation. Neuroimage Clin, 2021, 32: 102854.
|
31. |
S Muhammad A K, Kanwal Z, Ulfat B, et al. CEPHA29: Automatic cephalometric landmark detection challenge 2023. ArXiv preprint, 2022: 2212.04808.
|
32. |
Jin Haibo, Che Haoxuan, Chen Hao. Unsupervised domain adaptation for anatomical landmark detection// International Conference on Medical Image Computing and ComputerAssisted Intervention (MICCAI). Cham: Springer, 2023, 14220: 695-705.
|
33. |
Kingma D P, Ba J L. Adam: A method for stochastic optimization// International Conference on Learning Representations (ICLR). Ithaca: ArXiv, 2015: 13.
|
34. |
Li Yanjie, Yang Sen, Liu Peidong, et al. Simcc: A simple coordinate classification perspective for human pose estimation// Computer Vision - ECCV 2022: 17th European Conference(ECCV). Cham: Springer, 2022, 13666: 89-106.
|
35. |
King C H, Wang Y L, Lin W Y, et al. Automatic cephalometric landmark detection on x-ray images using object detection// IEEE 19th International Symposium on Biomedical Imaging (ISBI). Kolkata: IEEE, 2022: 1-4.
|
36. |
Hong W, Kim S M, Choi J, et al. Deep reinforcement learning using a multi-scale agent with a normalized reward strategy for automatic cephalometric landmark detection// 2023 4th International Conference on Big Data Analytics and Practices (IBDAP). Bangkok: IEEE 2023: 1-6.
|
37. |
Wang C W, Huang C T, Lee J H, et al. A benchmark for comparison of dental radiography analysis algorithms. Med Image Anal, 2016, 31: 63-76.
|