1. |
Cui Z, Fang Y, Mei L, et al. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images. Nat Commun, 2022, 13(1): 2096.
|
2. |
Liang Y H, Jiang L, Chen C, et al. The validity of cone-beam computed tomography in measuring root canal length using a gold standard. J Endod, 2013, 39(12): 1607-1610.
|
3. |
Segato A V K, Piasecki L, Nuñovero M F I, et al. The accuracy of a new cone-beam computed tomographic software in the preoperative working length determination ex vivo. J Endod, 2018, 44(6): 1024-1029.
|
4. |
Janner S F M, Jeger F B, Lussi A, et al. Precision of endodontic working length measurements: a pilot investigation comparing cone-beam computed tomography scanning with standard measurement techniques. J Endod, 2011, 37(8): 1046-1051.
|
5. |
Li Z, Ning X, Wang Z. A fast segmentation method for STL teeth model// ICME International Conference on Complex Medical Engineering. Beijing: IEEE, 2007: 163-166.
|
6. |
Wongwaen N, Sinthanayothin C. Computerized algorithm for 3D teeth segmentation// 2010 International Conference on Electronics and Information Engineering. Kyoto: IEEE, 2010, 1: V1-277-V1-280.
|
7. |
Hosntalab M, Aghaeizadeh Zoroofi R, Abbaspour Tehrani-Fard A, et al. Segmentation of teeth in CT volumetric dataset by panoramic projection and variational level set. Int J Comput Ass Rad, 2008, 3: 257-265.
|
8. |
Zhang J, Xia W, Dong J, et al. Root canal segmentation in CBCT images by 3D U-net with global and local combination loss// 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Electr Network: IEEE, 2021: 3097-3100.
|
9. |
Al-Sherif N, Guo G, Ammar H H. A new approach to teeth segmentation// 2012 IEEE International Symposium on Multimedia. Irvine: IEEE, 2012: 145-148.
|
10. |
Hiew L T, Ong S H, Foong K W C, et al. Tooth segmentation from cone-beam CT using graph cut// Proceedings of the Second APSIPA Annual Summit and Conference. Singapore: ASC, 2010: 272-275.
|
11. |
Keustermans J, Vandermeulen D, Suetens P. Integrating statistical shape models into a graph cut framework for tooth segmentation// Wang F, Shen D, Yan P, et al. Machine Learning in Medical Imaging. MLMI 2012. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2012, 7588: 242-249.
|
12. |
Evain T, Ripoche X, Atif J, et al. Semi-automatic teeth segmentation in cone-beam computed tomography by graph-cut with statistical shape priors// 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). Melbourne: IEEE, 2017: 1197-1200.
|
13. |
Keyhaninejad S, Zoroofi R A, Setarehdan S K, et al. Automated segmentation of teeth in multi-slice CT images// IET International Conference on Visual Information Engineering (VIE 2006). Stevenage: IET, 2006: 339-344.
|
14. |
Gao H, Chae O. Individual tooth segmentation from CT images using level set method with shape and intensity prior. Pattern Recogn, 2010, 43(7): 2406-2417.
|
15. |
Ji D X, Ong S H, Foong K W C. A level-set based approach for anterior teeth segmentation in cone beam computed tomography images. Comput Biol Med, 2014, 50: 116-128.
|
16. |
Gan Y, Xia Z, Xiong J, et al. Tooth and alveolar bone segmentation from dental computed tomography images. IEEE J Biomed Health Inform, 2017, 22(1): 196-204.
|
17. |
Gan Y, Xia Z, Xiong J, et al. Toward accurate tooth segmentation from computed tomography images using a hybrid level set model. Med Phys, 2015, 42(1): 14-27.
|
18. |
Wang Y, Liu S, Wang G, et al. Accurate tooth segmentation with improved hybrid active contour model. Phys Med Biol, 2018, 64(1): 015012.
|
19. |
Polizzi A, Quinzi V, Ronsivalle V, et al. Tooth automatic segmentation from CBCT images: a systematic review. Clin Oral Investig, 2023, 27(7): 3363-3378.
|
20. |
Tarce M, Zhou Y, Antonelli A, et al. The application of artificial intelligence for tooth segmentation in CBCT images: A systematic review. Appl Sci, 2024, 14(14): 6298.
|
21. |
Santos‐Junior A O, Fontenele R C, Neves F S, et al. A novel artificial intelligence‐powered tool for automated root canal segmentation in single‐rooted teeth on cone‐beam computed tomography. Int Endod J, 2025, 58(4): 658-671.
|
22. |
Cui Z, Li C, Wang W. ToothNet: automatic tooth instance segmentation and identification from cone beam CT images// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 6368-6377.
|
23. |
Chung M, Lee M, Hong J, et al. Pose-aware instance segmentation framework from cone beam CT images for tooth segmentation. Comput Biol Med, 2020, 120: 103720.
|
24. |
Chen Y, Du H, Yun Z, et al. Automatic segmentation of individual tooth in dental CBCT images from tooth surface map by a multi-task FCN. IEEE Access, 2020, 8: 97296-97309.
|
25. |
Dot G, Chaurasia A, Dubois G, et al. DentalSegmentator: robust open source deep learning-based CT and CBCT image segmentation. J Dent, 2024, 147: 105130.
|
26. |
Shaheen E, Leite A, Alqahtani K A, et al. A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study. J Dent, 2021, 115: 103865.
|
27. |
Wang Y, Xia W, Yan Z, et al. Root canal treatment planning by automatic tooth and root canal segmentation in dental CBCT with deep multi-task feature learning. Med Image Anal, 2023, 85: 102750.
|
28. |
Gong Y, Zhang J, Cheng J, et al. Automatic tooth segmentation for patients with alveolar clefts guided by tooth descriptors. Biomed Signal Process Control, 2024, 90: 105821.
|
29. |
Tan M, Cui Z, Zhong T, et al. A progressive framework for tooth and substructure segmentation from cone-beam CT images. Comput Biol Med, 2024, 169: 107839.
|
30. |
Wu X, Chen H, Huang Y, et al. Center-sensitive and boundary-aware tooth instance segmentation and classification from cone-beam CT// 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). Iowa: IEEE, 2020: 939-942.
|
31. |
Cui Z, Zhang B, Lian C, et al. Hierarchical morphology-guided tooth instance segmentation from CBCT images// Feragen A, Sommer S, Schnabel J, et al. Information Processing in Medical Imaging. IPMI 2021. Lecture Notes in Computer Science. Cham: Springer, 2021, 12729: 150-162.
|
32. |
Schäfer E, Diez C, Hoppe W, et al. Roentgenographic investigation of frequency and degree of canal curvatures in human permanent teeth. J Endod, 2002, 28(3): 211-216.
|
33. |
Park P S, Kim K D, Perinpanayagam H, et al. Three-dimensional analysis of root canal curvature and direction of maxillary lateral incisors by using cone-beam computed tomography. J Endod, 2013, 39(9): 1124-1129.
|
34. |
Oktay O, Schlemper J, Folgoc L L, et al. Attention U-net: Learning where to look for the pancreas. arxiv preprint arxiv, 2018: 1804.03999.
|
35. |
Milletari F, Navab N, Ahmadi S A. V-net: Fully convolutional neural networks for volumetric medical image segmentation// 2016 Fourth International Conference on 3D Vision (3DV). Stanford: IEEE, 2016: 565-571.
|
36. |
Sharma M C, Arora V. Determination of working length of root canal. Med J Armed Forces India, 2010, 66(3): 231-234.
|
37. |
黄定明. 根管治疗难度系数临床评估标准. 华西口腔医学杂志, 2004, 22(5): 381-383.
|