1. |
Cowan H, Lakra C, Desai M. Autonomic dysreflexia in spinal cord injury. BMJ, 2020, 371: m3596. doi: 10.1136/bmj.m3596.
|
2. |
Sunshine MD, Bindi VE, Nguyen BL, et al. Oxygen therapy attenuates neuroinflammation after spinal cord injury. J Neuroinflammation, 2023, 20(1): 303. doi: 10.1186/s12974-023-02985-6.
|
3. |
Sterner RC, Sterner RM. Immune response following traumatic spinal cord injury: Pathophysiology and therapies. Front Immunol, 2023, 13: 1084101. doi: 10.3389/fimmu.2022.1084101.
|
4. |
Sun C, Deng J, Ma Y, et al. The dual role of microglia in neuropathic pain after spinal cord injury: Detrimental and protective effects. Exp Neurol, 2023, 370: 114570. doi: 10.1016/j.expneurol.2023.114570.
|
5. |
Deng J, Meng F, Zhang K, et al. Emerging roles of microglia depletion in the treatment of spinal cord injury. Cells, 2022, 11(12): 1871. doi: 10.3390/cells11121871.
|
6. |
Li F, Wang Y, Zheng K. Microglial mitophagy integrates the microbiota-gut-brain axis to restrain neuroinflammation during neurotropic herpesvirus infection. Autophagy, 2023, 19(2): 734-736.
|
7. |
Li X, Yu Z, Zong W, et al. Deficiency of the microglial Hv1 proton channel attenuates neuronal pyroptosis and inhibits inflammatory reaction after spinal cord injury. J Neuroinflammation, 2020, 17(1): 263. doi: 10.1186/s12974-020-01942-x.
|
8. |
Tan Z, Guo Y, Shrestha M, et al. Microglia depletion exacerbates retinal ganglion cell loss in a mouse model of glaucoma. Exp Eye Res, 2022, 225: 109273. doi: 10.1016/j.exer.2022.109273.
|
9. |
Baaklini CS, Ho MFS, Lange T, et al. Microglia promote remyelination independent of their role in clearing myelin debris. Cell Rep, 2023, 42(12): 113574. doi: 10.1016/j.celrep.2023.113574.
|
10. |
Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol, 2016, 173(4): 649-665.
|
11. |
Hsu CH, Pan YJ, Zheng YT, et al. Ultrasound reduces inflammation by modulating M1/M2 polarization of microglia through STAT1/STAT6/PPARγ signaling pathways. CNS Neurosci Ther, 2023, 29(12): 4113-4123.
|
12. |
Long Y, Li XQ, Deng J, et al. Modulating the polarization phenotype of microglia—A valuable strategy for central nervous system diseases. Ageing Res Rev, 2024, 93: 102160. doi: 10.1016/j.arr.2023.102160.
|
13. |
Guo H, Du M, Yang Y, et al. Sp1 Regulates the M1 polarization of microglia through the HuR/NF-κB axis after spinal cord injury. Neuroscience, 2024, 544: 50-63.
|
14. |
Wang C, Wang Q, Lou Y, et al. Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation. J Cell Mol Med, 2018, 22(2): 1148-1166.
|
15. |
Shen Q, Zhang G. Depletion of microglia mitigates cerebrovascular dysfunction in diet-induced obesity mice. Am J Physiol Endocrinol Metab, 2021, 321(3): E367-E375.
|
16. |
Asai H, Ikezu S, Tsunoda S, et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci, 2015, 18(11): 1584-1593.
|
17. |
Elmore MR, Najafi AR, Koike MA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron, 2014, 82(2): 380-397.
|
18. |
Rice RA, Spangenberg EE, Yamate-Morgan H, et al. Elimination of microglia improves functional outcomes following extensive neuronal loss in the hippocampus. J Neurosci, 2015, 35(27): 9977-9989.
|
19. |
Bellver-Landete V, Bretheau F, Mailhot B, et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat Commun, 2019, 10(1): 518. doi: 10.1038/s41467-019-08446-0.
|
20. |
Brennan FH, Li Y, Wang C, et al. Microglia coordinate cellular interactions during spinal cord repair in mice. Nat Commun, 2022, 13(1): 4096. doi: 10.1038/s41467-022-31797-0.
|
21. |
Liu K, Lu Y, Lee JK, et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci, 2010, 13(9): 1075-1081.
|
22. |
Au NPB, Ma CHE. Neuroinflammation, microglia and implications for retinal ganglion cell survival and axon regeneration in traumatic optic neuropathy. Front Immunol, 2022, 13: 860070. doi: 10.3389/fimmu.2022.860070.
|
23. |
Hu X, Huang J, Li Z, et al. Lactate promotes microglial scar formation and facilitates locomotor function recovery by enhancing histone H4 lysine 12 lactylation after spinal cord injury. J Neuroinflammation, 2024, 21(1): 193. doi: 10.1186/s12974-024-03186-5.
|
24. |
Okojie AK, Uweru JO, Coburn MA, et al. Distinguishing the effects of systemic CSF1R inhibition by PLX3397 on microglia and peripheral immune cells. J Neuroinflammation, 2023, 20(1): 242. doi: 10.1186/s12974-023-02924-5.
|
25. |
Bisht K, Okojie KA, Sharma K, et al. Capillary-associated microglia regulate vascular structure and function through PANX1-P2RY12 coupling in mice. Nat Commun, 2021, 12(1): 5289. doi: 10.1038/s41467-021-25590-8.
|
26. |
Tran AP, Warren PM, Silver J. New insights into glial scar formation after spinal cord injury. Cell Tissue Res. 2022 Mar;387(3): 319-336.
|
27. |
Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair. Nat Commun, 2019, 10(1): 3879. doi: 10.1038/s41467-019-11707-7.
|
28. |
Vidal-Itriago A, Radford RAW, Aramideh JA, et al. Microglia morphophysiological diversity and its implications for the CNS. Front Immunol, 2022, 13: 997786. doi: 10.3389/fimmu.2022.997786.
|
29. |
Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci, 2004, 5(2): 146-156.
|
30. |
Silver J. The glial scar is more than just astrocytes. Exp Neurol, 2016, 286: 147-149.
|
31. |
Lu L, Ye J, Yi D, et al. Runx2 suppresses astrocyte activation and astroglial scar formation after spinal cord injury in mice. Mol Neurobiol, 2024, 61(12): 10820-10829.
|
32. |
Qian D, Dong Y, Liu X, et al. Salidroside promotes the repair of spinal cord injury by inhibiting astrocyte polarization, promoting neural stem cell proliferation and neuronal differentiation. Cell Death Discov, 2024, 10(1): 224. doi: 10.1038/s41420-024-01989-2.
|
33. |
Hemati-Gourabi M, Cao T, Romprey MK, et al. Capacity of astrocytes to promote axon growth in the injured mammalian central nervous system. Front Neurosci, 2022, 16: 955598. doi: 10.3389/fnins.2022.955598.
|
34. |
Dias DO, Göritz C. Fibrotic scarring following lesions to the central nervous system. Matrix Biol, 2018. doi: 10.1016/j.matbio.2018.02.009.
|