Copyright © the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved
| 1. | Rodrigues M, Kosaric N, Bonham CA, et al. Wound healing: A cellular perspective. Physiol Rev, 2019, 99(1): 665-706. |
| 2. | Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med, 2014, 6(265): 265sr6. doi: 10.1126/scitranslmed.3009337. |
| 3. | Oliveira A, Simões S, Ascenso A, et al. Therapeutic advances in wound healing. J Dermatolog Treat, 2022, 33(1): 2-22. |
| 4. | Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478): eaau6977. doi: 10.1126/science.aau6977. |
| 5. | Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells, 2017, 35(4): 851-858. |
| 6. | Cao H, Duan L, Zhang Y, et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther, 2021, 6(1): 426. doi: 10.1038/s41392-021-00830-x. |
| 7. | Fan MH, Pi JK, Zou CY, et al. Hydrogel-exosome system in tissue engineering: A promising therapeutic strategy. Bioact Mater, 2024, 38: 1-30. |
| 8. | Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res, 2009, 37(5): 1528-1542. |
| 9. | Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol, 2007, 127(3): 514-525. |
| 10. | Han C, Barakat M, DiPietro LA. Angiogenesis in wound repair: Too much of a good thing? Cold Spring Harb Perspect Biol, 2022, 14(10): a041225. doi: 10.1101/cshperspect.a041225. |
| 11. | Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration. Nature, 2008, 453(7193): 314-321. |
| 12. | Cheng W, Yan-Hua R, Fang-Gang N, et al. The content and ratio of type Ⅰ and Ⅲ collagen in skin differ with age and injury. Afr J Biotechnol, 2011, 10(13): 2524-2529. |
| 13. | Schreml S, Szeimies RM, Prantl L, et al. Oxygen in acute and chronic wound healing. Br J Dermatol, 2010, 163(2): 257-268. |
| 14. | Mervis JS, Phillips TJ. Pressure ulcers: Pathophysiology, epidemiology, risk factors, and presentation. J Am Acad Dermatol, 2019, 81(4): 881-890. |
| 15. | Hedayati N, Carson JG, Chi YW, et al. Management of mixed arterial venous lower extremity ulceration: A review. Vasc Med, 2015, 20(5): 479-486. |
| 16. | Berlanga-Acosta J, Schultz GS, López-Mola E, et al. Glucose toxic effects on granulation tissue productive cells: the diabetics’ impaired healing. Biomed Res Int, 2013, 2013: 256043. doi: 10.1155/2013/256043. |
| 17. | Uberoi A, McCready-Vangi A, Grice EA. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat Rev Microbiol, 2024, 22(8): 507-521. |
| 18. | Eriksson E, Liu PY, Schultz GS, et al. Chronic wounds: Treatment consensus. Wound Repair Regen, 2022, 30(2): 156-171. |
| 19. | Falanga V, Isseroff RR, Soulika AM, et al. Chronic wounds. Nat Rev Dis Primers, 2022, 8(1): 50. doi: 10.1038/s41572-022-00377-3. |
| 20. | Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano, 2021, 15(8): 12687-12722. |
| 21. | Jing YX, Huang T, Zhao B, et al. A ROS/glucose stimulated-responsive ADSCs-derived exosomes-release hydrogel system for diabetic wound healing. Chem Eng J, 2024, 487: 150561. doi: 10.1016/j.cej.2024.150561. |
| 22. | Cao Y, Chen B, Liu Q, et al. Dissolvable microneedle-based wound dressing transdermally and continuously delivers anti-inflammatory and pro-angiogenic exosomes for diabetic wound treatment. Bioact Mater, 2024, 42: 32-51. |
| 23. | Lyu S, Liu Q, Yuen HY, et al. A differential-targeting core-shell microneedle patch with coordinated and prolonged release of mangiferin and MSC-derived exosomes for scarless skin regeneration. Mater Horiz, 2024, 11(11): 2667-2684. |
| 24. | Shen K, Zheng R, Yu BR, et al. Suppression the glucose-induced ferroptosis in endothelial cells by 4OI-loading exosomes hydrogel for the treatment of diabetic foot ulcer. Chem Eng J, 2024, 497: 154696. doi: 10.1016/j.cej.2024.154696. |
| 25. | Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm, 2014, 463(2): 127-136. |
| 26. | Narayanaswamy R, Torchilin VP. Hydrogels and their applications in targeted drug delivery. Molecules, 2019, 24(3): 603. doi: 10.3390/molecules24030603. |
| 27. | Yuan J, Li M, He X, et al. A thermally stable bioactive chitosan scaffold with pH-responsive exosome adsorption and release function promotes wound healing. Int J Biol Macromol, 2025, 306(Pt 3): 141552. doi: 10.1016/j.ijbiomac.2025.141552. |
| 28. | Teng X, Liu T, Zhao G, et al. A novel exosome-based multifunctional nanocomposite platform driven by photothermal-controlled release system for repair of skin injury. J Control Release, 2024, 371: 258-272. |
| 29. | Wang X, Dong J, Kang J, et al. Self-adaptive release of stem cell-derived exosomes from a multifunctional hydrogel for accelerating MRSA-infected diabetic wound repair. J Am Chem Soc, 2025, 147(19): 16362-16378. |
| 30. | Meng H, Su J, Shen Q, et al. A smart MMP-9-responsive hydrogel releasing M2 macrophage-derived exosomes for diabetic wound healing. Adv Healthc Mater, 2025, 14(10): e2404966. doi: 10.1002/adhm.202404966. |
| 31. | Jin W, Li Y, Yu M, et al. Advances of exosomes in diabetic wound healing. Burns Trauma, 2025, 13: tkae078. doi: 10.1093/burnst/tkae078. |
| 32. | Liu C, Cheng C, Cheng K, et al. Precision exosome engineering for enhanced wound healing and scar revision. J Transl Med, 2025, 23(1): 578. doi: 10.1186/s12967-025-06578-0. |
| 33. | Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol, 2019, 21(1): 9-17. |
| 34. | Zhou Y, Zhang XL, Lu ST, et al. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration. Stem Cell Res Ther, 2022, 13(1): 407. doi: 10.1186/s13287-022-02980-3. |
| 35. | Shiekh PA, Singh A, Kumar A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing. Biomaterials, 2020, 249: 120020. doi: 10.1016/j.biomaterials.2020.120020. |
| 36. | Yang Y, Zhang J, Wu S, et al. Exosome/antimicrobial peptide laden hydrogel wound dressings promote scarless wound healing through miR-21-5p-mediated multiple functions. Biomaterials, 2024, 308: 122558. doi: 10.1016/j.biomaterials.2024.122558. |
| 37. | Shi Y, Wang S, Wang K, et al. Relieving macrophage dysfunction by inhibiting SREBP2 activity: A hypoxic mesenchymal stem cells-derived exosomes loaded multifunctional hydrogel for accelerated diabetic wound healing. Small, 2024, 20(25): e2309276. doi: 10.1002/smll.202309276. |
| 38. | Zeng J, Sun Z, Zeng F, et al. M2 macrophage-derived exosome-encapsulated microneedles with mild photothermal therapy for accelerated diabetic wound healing. Mater Today Bio, 2023, 20: 100649. doi: 10.1016/j.mtbio.2023.100649. |
| 39. | Li W, Wu S, Ren L, et al. Development of an antiswelling hydrogel system incorporating M2-exosomes and photothermal effect for diabetic wound healing. ACS Nano, 2023, 17(21): 22106-22120. |
| 40. | Xu J, Lin S, Chen H, et al. Highly active frozen nanovesicles microneedles for senile wound healing via antibacteria, immunotherapy, and skin regeneration. Adv Healthc Mater, 2024, 13(12): e2304315. doi: 10.1002/adhm.202304315. |
| 41. | Yuan M, Liu K, Jiang T, et al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing. J Nanobiotechnology, 2022, 20(1): 147. doi: 10.1186/s12951-022-01354-4. |
| 42. | Wang S, Wu J, Ren K, et al. Platelet-rich plasma-derived exosome-encapsulated hydrogels accelerate diabetic wound healing by inhibiting fibroblast ferroptosis. ACS Appl Mater Interfaces, 2025, 17(19): 27923-27936. |
| 43. | Meng S, Wei Q, Chen S, et al. MiR-141-3p-functionalized exosomes loaded in dissolvable microneedle arrays for hypertrophic scar treatment. Small, 2024, 20(8): e2305374. doi: 10.1002/smll.202305374. |
| 44. | Fan MH, Zhang XZ, Jiang YL, et al. Exosomes from hypoxic urine-derived stem cells facilitate healing of diabetic wound by targeting SERPINE1 through miR-486-5p. Biomaterials, 2025, 314: 122893. doi: 10.1016/j.biomaterials.2024.122893. |
| 45. | Zhu D, Hu Y, Kong X, et al. Enhanced burn wound healing by controlled-release 3D ADMSC-derived exosome-loaded hyaluronan hydrogel. Regen Biomater, 2024, 11: rbae035. doi: 10.1093/rb/rbae035. |
| 46. | Peng H, Li HC, Zhang X, et al. 3D-exosomes laden multifunctional hydrogel enhances diabetic wound healing via accelerated angiogenesis. Chem Eng J, 2023, 475: 146238. doi: 10.1016/j.cej.2023.146238. |
| 47. | Yu H, Wang B, Li Z, et al. Corrigendum to ‘Tβ4-exosome-loaded hemostatic and antibacterial hydrogel to improve vascular regeneration and modulate macrophage polarization for diabetic wound treatment’ Mater. Today Bio, Volume 31, 2025, 101585. Mater Today Bio, 2025, 32: 101762. doi: 10.1016/j.mtbio.2025.101762. |
| 48. | Zhou Z, Bu Z, Wang S, et al. Extracellular matrix hydrogels with fibroblast growth factor 2 containing exosomes for reconstructing skin microstructures. J Nanobiotechnology, 2024, 22(1): 438. doi: 10.1186/s12951-024-02718-8. |
| 49. | Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci, 2016, 73(20): 3861-3885. |
| 50. | Banerjee A, Singh P, Sheikh PA, et al. A multifunctional silk-hyaluronic acid self-healing hydrogel laden with alternatively activated macrophage-derived exosomes reshape microenvironment of diabetic wound and accelerate healing. Int J Biol Macromol, 2024, 270(Pt 2): 132384. doi: 10.1016/j.ijbiomac.2024.132384. |
| 51. | Shen Z, Wang L, Xie X, et al. Sprayable, antimicrobial and immunoregulation hydrogel loading exosomes based on oxidized sodium alginate for efficient wound healing at skin graft donor sites and health detection. Carbohydr Polym, 2025, 351: 123098. doi: 10.1016/j.carbpol.2024.123098. |
| 52. | Novak ML, Koh TJ. Phenotypic transitions of macrophages orchestrate tissue repair. Am J Pathol, 2013, 183(5): 1352-1363. |
| 53. | Li M, Hou Q, Zhong L, et al. Macrophage related chronic inflammation in non-healing wounds. Front Immunol, 2021, 12: 681710. doi: 10.3389/fimmu.2021.681710. |
| 54. | Eilken HM, Adams RH. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol, 2010, 22(5): 617-625. |
| 55. | Huang W, Guo Q, Wu H, et al. Engineered Exosomes loaded in intrinsic immunomodulatory hydrogels with promoting angiogenesis for programmed therapy of diabetic wounds. ACS Nano, 2025, 19(14): 14467-14483. |
| 56. | Korntner S, Lehner C, Gehwolf R, et al. Limiting angiogenesis to modulate scar formation. Adv Drug Deliv Rev, 2019, 146: 170-189. |
| 57. | Mathew-Steiner SS, Roy S, Sen CK. Collagen in wound healing. Bioengineering, 2021, 8(5): 63. doi: 10.3390/bioengineering8050063. |
| 58. | Larson BJ, Longaker MT, Lorenz HP. Scarless fetal wound healing: a basic science review. Plast Reconstr Surg, 2010, 126(4): 1172-1180. |
| 59. | Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Infect Dis, 2004, 17(2): 91-96. |
| 60. | Zhong Y, Xiao H, Seidi F, et al. Natural polymer-based antimicrobial hydrogels without synthetic antibiotics as wound dressings. Biomacromolecules, 2020, 21(8): 2983-3006. |
| 61. | Lyu S, Dong Z, Xu X, et al. Going below and beyond the surface: Microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioact Mater, 2023, 27: 303-326. |
| 62. | Chen Y, Younis MR, He G, et al. Oxidative stimuli-responsive “pollen-like”exosomes from silver nanoflowers remodeling diabetic wound microenvironment for accelerating wound healing. Adv Healthc Mater, 2023, 12(23): e2300456. doi: 10.1002/adhm.202300456. |
| 63. | Xiang K, Chen J, Guo J, et al. Multifunctional ADM hydrogel containing endothelial cell-exosomes for diabetic wound healing. Mater Today Bio, 2023, 23: 100863. doi: 10.1016/j.mtbio.2023.100863. |
| 64. | Ge W, Gao Y, Zeng Y, et al. Silk fibroin microneedles loaded with lipopolysaccharide-pretreated bone marrow mesenchymal stem cell-derived exosomes for oral ulcer treatment. ACS Appl Mater Interfaces, 2024, 16(29): 37486-37496. |
| 65. | Yang P, Ju Y, Liu X, et al. Natural self-healing injectable hydrogels loaded with exosomes and berberine for infected wound healing. Mater Today Bio, 2023, 23: 100875. doi: 10.1016/j.mtbio.2023.100875. |
| 66. | Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res, 2010, 89(3): 219-229. |
| 67. | Han X, Saengow C, Ju L, et al. Exosome-coated oxygen nanobubble-laden hydrogel augments intracellular delivery of exosomes for enhanced wound healing. Nat Commun, 2024, 15(1): 3435. doi: 10.1038/s41467-024-47696-5. |
| 68. | Zhang Y, Fang M, Xie W, et al. Sprayable alginate hydrogel dressings with oxygen production and exosome loading for the treatment of diabetic wounds. Int J Biol Macromol, 2023, 242(Pt 3): 125081. doi: 10.1016/j.ijbiomac.2023.125081. |
| 69. | Xiong Y, Chen L, Liu P, et al. All-in-one: Multifunctional hydrogel accelerates oxidative diabetic wound healing through timed-release of exosome and fibroblast growth factor. Small, 2022, 18(1): e2104229. doi: 10.1002/smll.202104229. |
| 70. | Zhang Y, Li M, Wang Y, et al. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission. Bioact Mater, 2023, 26: 323-336. |
| 71. | Patel S, Srivastava S, Singh MR, et al. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother, 2019, 112: 108615. doi: 10.1016/j.biopha.2019.108615. |
| 72. | Yang P, Ju Y, Shen N, et al. Exos-loaded gox-modified smart-response self-healing hydrogel improves the microenvironment and promotes wound healing in diabetic wounds. Adv Healthc Mater, 2025, 14(7): e2403304. doi: 10.1002/adhm.202403304. |
| 73. | Yuan W, Huang C, Deng W, et al. Hyaluronic acid methacryloyl/chitosan methacryloyl/3-methacrylamidophenylboronic acid multifunctional hydrogel loading exosome for diabetic wound healing. Int J Biol Macromol, 2024, 280(Pt 3): 135562. doi: 10.1016/j.ijbiomac.2024.135562. |
- 1. Rodrigues M, Kosaric N, Bonham CA, et al. Wound healing: A cellular perspective. Physiol Rev, 2019, 99(1): 665-706.
- 2. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med, 2014, 6(265): 265sr6. doi: 10.1126/scitranslmed.3009337.
- 3. Oliveira A, Simões S, Ascenso A, et al. Therapeutic advances in wound healing. J Dermatolog Treat, 2022, 33(1): 2-22.
- 4. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478): eaau6977. doi: 10.1126/science.aau6977.
- 5. Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells, 2017, 35(4): 851-858.
- 6. Cao H, Duan L, Zhang Y, et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther, 2021, 6(1): 426. doi: 10.1038/s41392-021-00830-x.
- 7. Fan MH, Pi JK, Zou CY, et al. Hydrogel-exosome system in tissue engineering: A promising therapeutic strategy. Bioact Mater, 2024, 38: 1-30.
- 8. Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res, 2009, 37(5): 1528-1542.
- 9. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol, 2007, 127(3): 514-525.
- 10. Han C, Barakat M, DiPietro LA. Angiogenesis in wound repair: Too much of a good thing? Cold Spring Harb Perspect Biol, 2022, 14(10): a041225. doi: 10.1101/cshperspect.a041225.
- 11. Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration. Nature, 2008, 453(7193): 314-321.
- 12. Cheng W, Yan-Hua R, Fang-Gang N, et al. The content and ratio of type Ⅰ and Ⅲ collagen in skin differ with age and injury. Afr J Biotechnol, 2011, 10(13): 2524-2529.
- 13. Schreml S, Szeimies RM, Prantl L, et al. Oxygen in acute and chronic wound healing. Br J Dermatol, 2010, 163(2): 257-268.
- 14. Mervis JS, Phillips TJ. Pressure ulcers: Pathophysiology, epidemiology, risk factors, and presentation. J Am Acad Dermatol, 2019, 81(4): 881-890.
- 15. Hedayati N, Carson JG, Chi YW, et al. Management of mixed arterial venous lower extremity ulceration: A review. Vasc Med, 2015, 20(5): 479-486.
- 16. Berlanga-Acosta J, Schultz GS, López-Mola E, et al. Glucose toxic effects on granulation tissue productive cells: the diabetics’ impaired healing. Biomed Res Int, 2013, 2013: 256043. doi: 10.1155/2013/256043.
- 17. Uberoi A, McCready-Vangi A, Grice EA. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat Rev Microbiol, 2024, 22(8): 507-521.
- 18. Eriksson E, Liu PY, Schultz GS, et al. Chronic wounds: Treatment consensus. Wound Repair Regen, 2022, 30(2): 156-171.
- 19. Falanga V, Isseroff RR, Soulika AM, et al. Chronic wounds. Nat Rev Dis Primers, 2022, 8(1): 50. doi: 10.1038/s41572-022-00377-3.
- 20. Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano, 2021, 15(8): 12687-12722.
- 21. Jing YX, Huang T, Zhao B, et al. A ROS/glucose stimulated-responsive ADSCs-derived exosomes-release hydrogel system for diabetic wound healing. Chem Eng J, 2024, 487: 150561. doi: 10.1016/j.cej.2024.150561.
- 22. Cao Y, Chen B, Liu Q, et al. Dissolvable microneedle-based wound dressing transdermally and continuously delivers anti-inflammatory and pro-angiogenic exosomes for diabetic wound treatment. Bioact Mater, 2024, 42: 32-51.
- 23. Lyu S, Liu Q, Yuen HY, et al. A differential-targeting core-shell microneedle patch with coordinated and prolonged release of mangiferin and MSC-derived exosomes for scarless skin regeneration. Mater Horiz, 2024, 11(11): 2667-2684.
- 24. Shen K, Zheng R, Yu BR, et al. Suppression the glucose-induced ferroptosis in endothelial cells by 4OI-loading exosomes hydrogel for the treatment of diabetic foot ulcer. Chem Eng J, 2024, 497: 154696. doi: 10.1016/j.cej.2024.154696.
- 25. Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm, 2014, 463(2): 127-136.
- 26. Narayanaswamy R, Torchilin VP. Hydrogels and their applications in targeted drug delivery. Molecules, 2019, 24(3): 603. doi: 10.3390/molecules24030603.
- 27. Yuan J, Li M, He X, et al. A thermally stable bioactive chitosan scaffold with pH-responsive exosome adsorption and release function promotes wound healing. Int J Biol Macromol, 2025, 306(Pt 3): 141552. doi: 10.1016/j.ijbiomac.2025.141552.
- 28. Teng X, Liu T, Zhao G, et al. A novel exosome-based multifunctional nanocomposite platform driven by photothermal-controlled release system for repair of skin injury. J Control Release, 2024, 371: 258-272.
- 29. Wang X, Dong J, Kang J, et al. Self-adaptive release of stem cell-derived exosomes from a multifunctional hydrogel for accelerating MRSA-infected diabetic wound repair. J Am Chem Soc, 2025, 147(19): 16362-16378.
- 30. Meng H, Su J, Shen Q, et al. A smart MMP-9-responsive hydrogel releasing M2 macrophage-derived exosomes for diabetic wound healing. Adv Healthc Mater, 2025, 14(10): e2404966. doi: 10.1002/adhm.202404966.
- 31. Jin W, Li Y, Yu M, et al. Advances of exosomes in diabetic wound healing. Burns Trauma, 2025, 13: tkae078. doi: 10.1093/burnst/tkae078.
- 32. Liu C, Cheng C, Cheng K, et al. Precision exosome engineering for enhanced wound healing and scar revision. J Transl Med, 2025, 23(1): 578. doi: 10.1186/s12967-025-06578-0.
- 33. Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol, 2019, 21(1): 9-17.
- 34. Zhou Y, Zhang XL, Lu ST, et al. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration. Stem Cell Res Ther, 2022, 13(1): 407. doi: 10.1186/s13287-022-02980-3.
- 35. Shiekh PA, Singh A, Kumar A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing. Biomaterials, 2020, 249: 120020. doi: 10.1016/j.biomaterials.2020.120020.
- 36. Yang Y, Zhang J, Wu S, et al. Exosome/antimicrobial peptide laden hydrogel wound dressings promote scarless wound healing through miR-21-5p-mediated multiple functions. Biomaterials, 2024, 308: 122558. doi: 10.1016/j.biomaterials.2024.122558.
- 37. Shi Y, Wang S, Wang K, et al. Relieving macrophage dysfunction by inhibiting SREBP2 activity: A hypoxic mesenchymal stem cells-derived exosomes loaded multifunctional hydrogel for accelerated diabetic wound healing. Small, 2024, 20(25): e2309276. doi: 10.1002/smll.202309276.
- 38. Zeng J, Sun Z, Zeng F, et al. M2 macrophage-derived exosome-encapsulated microneedles with mild photothermal therapy for accelerated diabetic wound healing. Mater Today Bio, 2023, 20: 100649. doi: 10.1016/j.mtbio.2023.100649.
- 39. Li W, Wu S, Ren L, et al. Development of an antiswelling hydrogel system incorporating M2-exosomes and photothermal effect for diabetic wound healing. ACS Nano, 2023, 17(21): 22106-22120.
- 40. Xu J, Lin S, Chen H, et al. Highly active frozen nanovesicles microneedles for senile wound healing via antibacteria, immunotherapy, and skin regeneration. Adv Healthc Mater, 2024, 13(12): e2304315. doi: 10.1002/adhm.202304315.
- 41. Yuan M, Liu K, Jiang T, et al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing. J Nanobiotechnology, 2022, 20(1): 147. doi: 10.1186/s12951-022-01354-4.
- 42. Wang S, Wu J, Ren K, et al. Platelet-rich plasma-derived exosome-encapsulated hydrogels accelerate diabetic wound healing by inhibiting fibroblast ferroptosis. ACS Appl Mater Interfaces, 2025, 17(19): 27923-27936.
- 43. Meng S, Wei Q, Chen S, et al. MiR-141-3p-functionalized exosomes loaded in dissolvable microneedle arrays for hypertrophic scar treatment. Small, 2024, 20(8): e2305374. doi: 10.1002/smll.202305374.
- 44. Fan MH, Zhang XZ, Jiang YL, et al. Exosomes from hypoxic urine-derived stem cells facilitate healing of diabetic wound by targeting SERPINE1 through miR-486-5p. Biomaterials, 2025, 314: 122893. doi: 10.1016/j.biomaterials.2024.122893.
- 45. Zhu D, Hu Y, Kong X, et al. Enhanced burn wound healing by controlled-release 3D ADMSC-derived exosome-loaded hyaluronan hydrogel. Regen Biomater, 2024, 11: rbae035. doi: 10.1093/rb/rbae035.
- 46. Peng H, Li HC, Zhang X, et al. 3D-exosomes laden multifunctional hydrogel enhances diabetic wound healing via accelerated angiogenesis. Chem Eng J, 2023, 475: 146238. doi: 10.1016/j.cej.2023.146238.
- 47. Yu H, Wang B, Li Z, et al. Corrigendum to ‘Tβ4-exosome-loaded hemostatic and antibacterial hydrogel to improve vascular regeneration and modulate macrophage polarization for diabetic wound treatment’ Mater. Today Bio, Volume 31, 2025, 101585. Mater Today Bio, 2025, 32: 101762. doi: 10.1016/j.mtbio.2025.101762.
- 48. Zhou Z, Bu Z, Wang S, et al. Extracellular matrix hydrogels with fibroblast growth factor 2 containing exosomes for reconstructing skin microstructures. J Nanobiotechnology, 2024, 22(1): 438. doi: 10.1186/s12951-024-02718-8.
- 49. Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci, 2016, 73(20): 3861-3885.
- 50. Banerjee A, Singh P, Sheikh PA, et al. A multifunctional silk-hyaluronic acid self-healing hydrogel laden with alternatively activated macrophage-derived exosomes reshape microenvironment of diabetic wound and accelerate healing. Int J Biol Macromol, 2024, 270(Pt 2): 132384. doi: 10.1016/j.ijbiomac.2024.132384.
- 51. Shen Z, Wang L, Xie X, et al. Sprayable, antimicrobial and immunoregulation hydrogel loading exosomes based on oxidized sodium alginate for efficient wound healing at skin graft donor sites and health detection. Carbohydr Polym, 2025, 351: 123098. doi: 10.1016/j.carbpol.2024.123098.
- 52. Novak ML, Koh TJ. Phenotypic transitions of macrophages orchestrate tissue repair. Am J Pathol, 2013, 183(5): 1352-1363.
- 53. Li M, Hou Q, Zhong L, et al. Macrophage related chronic inflammation in non-healing wounds. Front Immunol, 2021, 12: 681710. doi: 10.3389/fimmu.2021.681710.
- 54. Eilken HM, Adams RH. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol, 2010, 22(5): 617-625.
- 55. Huang W, Guo Q, Wu H, et al. Engineered Exosomes loaded in intrinsic immunomodulatory hydrogels with promoting angiogenesis for programmed therapy of diabetic wounds. ACS Nano, 2025, 19(14): 14467-14483.
- 56. Korntner S, Lehner C, Gehwolf R, et al. Limiting angiogenesis to modulate scar formation. Adv Drug Deliv Rev, 2019, 146: 170-189.
- 57. Mathew-Steiner SS, Roy S, Sen CK. Collagen in wound healing. Bioengineering, 2021, 8(5): 63. doi: 10.3390/bioengineering8050063.
- 58. Larson BJ, Longaker MT, Lorenz HP. Scarless fetal wound healing: a basic science review. Plast Reconstr Surg, 2010, 126(4): 1172-1180.
- 59. Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Infect Dis, 2004, 17(2): 91-96.
- 60. Zhong Y, Xiao H, Seidi F, et al. Natural polymer-based antimicrobial hydrogels without synthetic antibiotics as wound dressings. Biomacromolecules, 2020, 21(8): 2983-3006.
- 61. Lyu S, Dong Z, Xu X, et al. Going below and beyond the surface: Microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioact Mater, 2023, 27: 303-326.
- 62. Chen Y, Younis MR, He G, et al. Oxidative stimuli-responsive “pollen-like”exosomes from silver nanoflowers remodeling diabetic wound microenvironment for accelerating wound healing. Adv Healthc Mater, 2023, 12(23): e2300456. doi: 10.1002/adhm.202300456.
- 63. Xiang K, Chen J, Guo J, et al. Multifunctional ADM hydrogel containing endothelial cell-exosomes for diabetic wound healing. Mater Today Bio, 2023, 23: 100863. doi: 10.1016/j.mtbio.2023.100863.
- 64. Ge W, Gao Y, Zeng Y, et al. Silk fibroin microneedles loaded with lipopolysaccharide-pretreated bone marrow mesenchymal stem cell-derived exosomes for oral ulcer treatment. ACS Appl Mater Interfaces, 2024, 16(29): 37486-37496.
- 65. Yang P, Ju Y, Liu X, et al. Natural self-healing injectable hydrogels loaded with exosomes and berberine for infected wound healing. Mater Today Bio, 2023, 23: 100875. doi: 10.1016/j.mtbio.2023.100875.
- 66. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res, 2010, 89(3): 219-229.
- 67. Han X, Saengow C, Ju L, et al. Exosome-coated oxygen nanobubble-laden hydrogel augments intracellular delivery of exosomes for enhanced wound healing. Nat Commun, 2024, 15(1): 3435. doi: 10.1038/s41467-024-47696-5.
- 68. Zhang Y, Fang M, Xie W, et al. Sprayable alginate hydrogel dressings with oxygen production and exosome loading for the treatment of diabetic wounds. Int J Biol Macromol, 2023, 242(Pt 3): 125081. doi: 10.1016/j.ijbiomac.2023.125081.
- 69. Xiong Y, Chen L, Liu P, et al. All-in-one: Multifunctional hydrogel accelerates oxidative diabetic wound healing through timed-release of exosome and fibroblast growth factor. Small, 2022, 18(1): e2104229. doi: 10.1002/smll.202104229.
- 70. Zhang Y, Li M, Wang Y, et al. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission. Bioact Mater, 2023, 26: 323-336.
- 71. Patel S, Srivastava S, Singh MR, et al. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother, 2019, 112: 108615. doi: 10.1016/j.biopha.2019.108615.
- 72. Yang P, Ju Y, Shen N, et al. Exos-loaded gox-modified smart-response self-healing hydrogel improves the microenvironment and promotes wound healing in diabetic wounds. Adv Healthc Mater, 2025, 14(7): e2403304. doi: 10.1002/adhm.202403304.
- 73. Yuan W, Huang C, Deng W, et al. Hyaluronic acid methacryloyl/chitosan methacryloyl/3-methacrylamidophenylboronic acid multifunctional hydrogel loading exosome for diabetic wound healing. Int J Biol Macromol, 2024, 280(Pt 3): 135562. doi: 10.1016/j.ijbiomac.2024.135562.

