1. |
He F, Xiao H, Cai Y, et al. NSD1 promotes esophageal cancer tumorigenesis via HIF1α signaling. Cell Biol Toxicol, 2023, 39(4): 1835-1850.
|
2. |
Mevissen TET, Komander D. Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem, 2017, 86: 159-192.
|
3. |
Hu J, Yang D, Zhang H, et al. USP22 promotes tumor progression and induces epithelial-mesenchymal transition in lung adenocarcinoma. Lung Cancer, 2015, 88(3): 239-245.
|
4. |
Xiao H, Tian Y, Yang Y. USP22 acts as an oncogene by regulating the stability of cyclooxygenase-2 in non-small cell lung cancer. Biochem Biophys Res Commun, 2015, 460(3): 703-708.
|
5. |
Li Q, Zhang L, You W, et al. PRDM1/BLIMP1 induces cancer immune evasion by modulating the USP22-SPI1-PD-L1 axis in hepatocellular carcinoma cells. Nat Commun, 2022, 13: 7677.
|
6. |
Ning Z, Guo X, Liu X, et al. USP22 regulates lipidome accumulation by stabilizing PPARγ in hepatocellular carcinoma. Nat Commun, 2022, 13: 2187.
|
7. |
Huang J, Yin Q, Wang Y, et al. EZH2 inhibition enhances PD-L1 protein stability through USP22-mediated deubiquitination in colorectal cancer. Adv Sci, 2024, 11(23): e2308045.
|
8. |
Zhou Y, Chu P, Wang Y, et al. Epinephrine promotes breast cancer metastasis through a ubiquitin-specific peptidase 22-mediated lipolysis circuit. Sci Adv, 2024, 10(33): eado1533.
|
9. |
Guo J, Zhao J, Fu W, et al. Immune evasion and drug resistance mediated by USP22 in cancer: Novel targets and mechanisms. Front Immunol, 2022, 13: 918314.
|
10. |
Li J, Wang Z, Li Y, et al. USP22 nuclear expression is significantly associated with progression and unfavorable clinical outcome in human esophageal squamous cell carcinoma. J Cancer Res Clin Oncol, 2012, 138(8): 1291-1297.
|
11. |
Tanimoto K, Makino Y, Pereira T, et al. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J, 2000, 19(16): 4298-4309.
|
12. |
Infantino V, Santarsiero A, Convertini P, et al. Cancer cell metabolism in hypoxia: Role of HIF-1 as key regulator and therapeutic target. Int J Mol Sci, 2021, 22(11): 5703.
|
13. |
Wu X, Zhang H, Sui Z. CXCR4 promotes the growth and metastasis of esophageal squamous cell carcinoma as a critical downstream mediator of HIF-1α. Cancer Sci, 2022, 113(3): 926-939.
|
14. |
Zhao L, Wang G, Qi H, et al. LINC00330/CCL2 axis-mediated ESCC TAM reprogramming affects tumor progression. Cell Mol Biol Lett, 2024, 29: 77.
|
15. |
Kelly RJ. Emerging multimodality approaches to treat localized esophageal cancer. J Natl Compr Canc Netw, 2019, 17(8): 1009-1014.
|
16. |
Wang H, Tang H, Fang Y, et al. Morbidity and mortality of patients who underwent minimally invasive esophagectomy after neoadjuvant chemoradiotherapy vs neoadjuvant chemotherapy for locally advanced esophageal squamous cell carcinoma: A randomized clinical trial. JAMA Surg, 2021, 156(5): 444-451.
|
17. |
Abelev GI, Sell S. Tumor markers. Introduction. Semin Cancer Biol, 1999, 9(2): 61-65.
|
18. |
Bahnassy AA, Zekri AR, Abdallah S, et al. Human papillomavirus infection in Egyptian esophageal carcinoma: Correlation with p53, p21, mdm2, C-erbB2 and impact on survival. Pathol Int, 2005, 55(2): 53-62.
|
19. |
Kikuno R, Nagase T, Ishikawa K, et al. Prediction of the coding sequences of unidentified human genes. XIV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res, 1999, 6(3): 197-205.
|
20. |
Zhang K, Sun T, Li W, et al. Inhibition of USP7 upregulates USP22 and activates its downstream cancer-related signaling pathways in human cancer cells. Cell Commun Signal, 2023, 21: 319.
|
21. |
Wang S, Zhong X, Wang C, et al. USP22 positively modulates ERα action via its deubiquitinase activity in breast cancer. Cell Death Differ, 2020, 27(11): 3131-3145.
|
22. |
Glinsky GV. Death-from-cancer signatures and stem cell contribution to metastatic cancer. Cell Cycle, 2005, 4(9): 1171-1175.
|
23. |
Di Q, Zhao X, Tang H, et al. USP22 suppresses the NLRP3 inflammasome by degrading NLRP3 via ATG5-dependent autophagy. Autophagy, 2023, 19(3): 873-885.
|
24. |
Kosinsky RL, Zerche M, Saul D, et al. USP22 exerts tumor-suppressive functions in colorectal cancer by decreasing mTOR activity. Cell Death Differ, 2020, 27(4): 1328-1340.
|
25. |
Sun H, Meng Y, Yao L, et al. Ubiquitin-specific protease 22 controls melanoma metastasis and vulnerability to ferroptosis through targeting SIRT1/PTEN/PI3K signaling. MedComm, 2024, 5(8): e684.
|
26. |
Li XX, Wei XD, Wang QR. USP22 regulation of signal transduction pathways in tumors: Research progress. Chinese Journal of Cell Biology, 2024, 46(2): 345-354.
|
27. |
Hurst JH. William Kaelin, Peter Ratcliffe, and Gregg Semenza receive the 2016 Albert Lasker Basic Medical Research Award. J Clin Invest, 2016, 126(10): 3628-3638.
|
28. |
Talks KL, Turley H, Gatter KC, et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol, 2000, 157(2): 411-421.
|
29. |
Safran M, Kaelin WG Jr. HIF hydroxylation and the mammalian oxygen-sensing pathway. J Clin Invest, 2003, 111(6): 779-783.
|
30. |
Shukla SK, Purohit V, Mehla K, et al. MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer. Cancer Cell, 2017, 32(1): 71-87.
|
31. |
Palazón A, Aragonés J, Morales-Kastresana A, et al. Molecular pathways: Hypoxia response in immune cells fighting or promoting cancer. Clin Cancer Res, 2012, 18(5): 1207-1213.
|
32. |
Li HS, Zhou YN, Li L, et al. HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox Biol, 2019, 25: 101109.
|
33. |
Wang M, Zhao X, Zhu D, et al. HIF-1α promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment. J Exp Clin Cancer Res, 2017, 36: 60.
|
34. |
Ding XC, Wang LL, Zhang XD, et al. The relationship between expression of PD-L1 and HIF-1α in glioma cells under hypoxia. J Hematol Oncol, 2021, 14: 92.
|
35. |
Ling S, Shan Q, Zhan Q, et al. USP22 promotes hypoxia-induced hepatocellular carcinoma stemness by a HIF1α/USP22 positive feedback loop upon TP53 inactivation. Gut, 2020, 69(7): 1322-1334.
|
36. |
Shan Q, Yin L, Zhan Q, et al. The p-MYH9/USP22/HIF-1α axis promotes lenvatinib resistance and cancer stemness in hepatocellular carcinoma. Signal Transduct Target Ther, 2024, 9: 249.
|
37. |
Chen F, Chen J, Yang L, et al. Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol, 2019, 21(4): 498-510.
|
38. |
Karlowitz R, Stanifer ML, Roedig J, et al. USP22 controls type III interferon signaling and SARS-CoV-2 infection through activation of STING. Cell Death Dis, 2022, 13: 684.
|
39. |
Montauti E, Weinberg SE, Chu P, et al. A deubiquitination module essential for Treg fitness in the tumor microenvironment. Sci Adv, 2022, 8(47): eabo4116.
|