1. |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263.
|
2. |
Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 2011, 365(5): 395-409.
|
3. |
Li N, Tan F, Chen W, et al. One-off low-dose CT for lung cancer screening in China: a multicentre, population-based, prospective cohort study. Lancet Respir Med, 2022, 10(4): 378-391.
|
4. |
Gould MK, Huang BZ, Tammemagi MC, et al. Machine learning for early lung cancer identification using routine clinical and laboratory data. Am J Respir Crit Care Med, 2021, 204(4): 445-453.
|
5. |
Yang S, Huang Y, Lou X, et al. Toward a computable phenotype for determining eligibility of lung cancer screening using electronic health records. JCO Clin Cancer Inform, 2025, 9: e2400139.
|
6. |
Liu S, McCoy AB, Aldrich MC, et al. Leveraging natural language processing to identify eligible lung cancer screening patients with the electronic health record. Int J Med Inform, 2023, 177: 105136.
|
7. |
Yoo H, Lee SH, Arru CD, et al. AI-based improvement in lung cancer detection on chest radiographs: results of a multi-reader study in NLST dataset. Eur Radiol, 2021, 31(12): 9664-9674.
|
8. |
Nam JG, Park S, Hwang EJ, et al. Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology, 2019, 290(1): 218-228.
|
9. |
苏寅晨, 张晓琴. 人工智能辅助诊断系统在肺结节检测及良恶性判断中的应用价值. CT理论与应用研究, 2024, 33(3): 325-331.Su YC, Zhang XQ. Artificial intelligence-assisted diagnosis in detecting lung nodules and differentiating benign from malignant nodules. CT Theory Appl, 2024, 33(3): 325-331.
|
10. |
Hao L. Chinese experts consensus on artificial intelligence assisted management for pulmonary nodule (2022 version). Chin J Lung Cancer, 2022, 25(4): 219-225.
|
11. |
Li X, Zhang S, Luo X, et al. Accuracy and efficiency of an artificial intelligence-based pulmonary broncho-vascular three-dimensional reconstruction system supporting thoracic surgery: retrospective and prospective validation study. EBioMedicine, 2023, 87: 103857.
|
12. |
Duranti L, Tavecchio L, Rolli L, et al. New perspectives on lung cancer screening and artificial intelligence. Life (Basel), 2025, 15(3): 756.
|
13. |
Liu M, Wu J, Wang N, et al. The value of artificial intelligence in the diagnosis of lung cancer: a systematic review and meta-analysis. PLoS One, 2023, 18(3): e0273445.
|
14. |
Lancaster HL, Jiang B, Davies MPA, et al. Histological proven AI performance in the UKLS CT lung cancer screening study: potential for workload reduction. Eur J Cancer, 2025, 220: 115324.
|
15. |
Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med, 2019, 25(6): 954-961.
|
16. |
Yanagawa M. Artificial intelligence improves radiologist performance for predicting malignancy at chest CT. Radiological Society of North America Scientific Assembly and Annual Meeting, 2022: 692-693.
|
17. |
Alahmari SS, Cherezov D, Goldgof D, et al. Delta radiomics improves pulmonary nodule malignancy prediction in lung cancer screening. IEEE Access, 2018, 6: 77796-77806.
|
18. |
Li HJ, Qiu ZB, Wang MM, et al. Radiomics-based support vector machine distinguishes molecular events driving the progression of lung adenocarcinoma. J Thorac Oncol, 2025, 20(1): 52-64.
|
19. |
Yoo H, Kim KH, Singh R, et al. Validation of a deep learning algorithm for the detection of malignant pulmonary nodules in chest radiographs. JAMA Netw Open, 2020, 3(9): e2017135.
|
20. |
Wallis D, Soussan M, Lacroix M, et al. An [18F]FDG-PET/CT deep learning method for fully automated detection of pathological mediastinal lymph nodes in lung cancer patients. Eur J Nucl Med Mol Imaging, 2022, 49(3): 881-888.
|
21. |
Wang J, Sui X, Zhao R, et al. Value of deep learning reconstruction of chest low-dose CT for image quality improvement and lung parenchyma assessment on lung window. Eur Radiol, 2024, 34(2): 1053-1064.
|
22. |
Goto M, Nagayama Y, Sakabe D, et al. Lung-optimized deep-learning-based reconstruction for ultralow-dose CT. Acad Radiol, 2023, 30(3): 431-440.
|
23. |
胸外科分会, 吴阶平医学基金会. 人工智能在肺结节诊治中的应用专家共识(2022年版). 中国肺癌杂志, 2022, 25(4): 219-225.T horacic Surger y Committee, Department of Simulated Medicine, Wu Jieping Medical Foundation. Chinese Experts Consensus on Artificial Intelligence Assisted Management for Pulmonary Nodule (2022 Version). Chin Lung Cancer J, 2022, 25(4): 219-225.
|
24. |
Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat Med, 2018, 24(10): 1559-1567.
|
25. |
Pan X, Abduljabbar K, Coelho-Lima J, et al. The artificial intelligence-based model ANORAK improves histopathological grading of lung adenocarcinoma. Nat Cancer, 2024, 5(2): 347-363.
|
26. |
Davri A, Birbas E, Kanavos T, et al. Deep learning for lung cancer diagnosis, prognosis and prediction using histological and cytological images: a systematic review. Cancers (Basel), 2023, 15(15): 3981.
|
27. |
Shao J, Feng J, Li J, et al. Novel tools for early diagnosis and precision treatment based on artificial intelligence. Chin Med J Pulm Crit Care Med, 2023, 1(3): 148-160.
|
28. |
Yang Y, Yang J, Liang Y, et al. Identification and validation of efficacy of immunological therapy for lung cancer from histopathological images based on deep learning. Front Genet, 2021, 12: 718662.
|
29. |
Kather JN, Pearson AT, Halama N, et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med, 2019, 25(7): 1054-1056.
|
30. |
Niu Y, Wang L, Zhang X, et al. Predicting tumor mutational burden from lung adenocarcinoma histopathological images using deep learning. Front Oncol, 2022, 12: 927426.
|
31. |
Hondeblink LM, Hüyük M, Postmus PE, et al. Development and validation of a supervised deep learning algorithm for automated whole-slide programmed death-ligand 1 tumour proportion score assessment in non-small cell lung cancer. Histopathology, 2022, 80(4): 635-647.
|
32. |
Zhu Y, Liu YL, Feng Y, et al. A CT-derived deep neural network predicts for programmed death ligand-1 expression status in advanced lung adenocarcinomas. Ann Transl Med, 2020, 8(15): 930.
|
33. |
Sha L, Osinski BL, Ho IY, et al. Multi-field-of-view deep learning model predicts nonsmall cell lung cancer programmed death-ligand 1 status from whole-slide hematoxylin and eosin images. J Pathol Inform, 2019, 10: 24.
|
34. |
Song L, Zhu Z, Mao L, et al. Clinical, conventional CT and radiomic feature-based machine learning models for predicting ALK rearrangement status in lung adenocarcinoma patients. Front Oncol, 2020, 10: 369.
|
35. |
Wang S, Yang DM, Rong R, et al. Artificial intelligence in lung cancer pathology image analysis. Cancers (Basel), 2019, 11(11): 1673.
|
36. |
Adegbesan A, Akingbola A, Aremu O, et al. From scalpels to algorithms: the risk of dependence on artificial intelligence in surgery. J Med Surg Public Health, 2024, 3: 100140.
|
37. |
Sinha T, Khan A, Awan M, et al. Artificial intelligence and machine learning in predicting the response to immunotherapy in non-small cell lung carcinoma: a systematic review. Cureus, 2024, 16(5): e61220.
|
38. |
Sherman MA, Yaari AU, Priebe O, et al. Genome-wide mapping of somatic mutation rates uncovers drivers of cancer. Nat Biotechnol, 2022, 40(11): 1634-1643.
|
39. |
Wang S, Yu H, Gan Y, et al. Mining whole-lung information by artificial intelligence for predicting EGFR genotype and targeted therapy response in lung cancer: a multicohort study. Lancet Digit Health, 2022, 4(5): e309-e319.
|
40. |
Tamborero D, Dienstmann R, Rachid MH, et al. Support systems to guide clinical decision-making in precision oncology: the Cancer Core Europe Molecular Tumor Board Portal. Nat Med, 2020, 26(7): 992-994.
|
41. |
Kurnit KC, Dumbra EII, Litzenburger B, et al. Precision oncology decision support: current approaches and strategies for the future. Clin Cancer Res, 2018, 24(12): 2719-2731.
|
42. |
Pritchard D, Goodman C, Nadauld LD. Clinical utility of genomic testing in cancer care. JCO Precis Oncol, 2022, 6: e2100349.
|
43. |
Liu C, Liu X, Wu F, et al. Using artificial intelligence (Watson for oncology) for treatment recommendations amongst Chinese patients with lung cancer: feasibility study. J Med Internet Res, 2018, 20(9): e11087.
|
44. |
胡坚, 刘伦旭, 张毅, 等. 人工智能一体化三维重建应用于胸外科的中国专家共识. 中国胸心血管外科临床杂志, 2023, 30(5): 641-646.Hu J, Liu LX, Zhang Y, et al. Chinese expert consensus on the application of integrated 3D reconstruction with artificial intelligence in thoracic surgery. Chin Clin J Thorac Cardiovasc Surg, 30(5): 641-646.
|
45. |
Sadeghi AH, Mank Q, Tuzcu AS, et al. Artificial intelligence-assisted augmented reality robotic lung surgery: navigating the future of thoracic surgery. JTCVS Tech, 2024, 26: 121-125.
|
46. |
Peek JJ, Zhang X, Hildebrandt K, et al. A novel 3D image registration technique for augmented reality vision in minimally invasive thoracoscopic pulmonary segmentectomy. Int J Comput Assist Radiol Surg, 2025, 20(4): 787-795.
|
47. |
Huang G, Liu L, Wang L, et al. Prediction of postoperative cardiopulmonary complications after lung resection in a Chinese population: a machine learning-based study. Front Oncol, 2022, 12: 1003722.
|
48. |
Leivaditis V, Maniatopoulos AA, Lausberg H, et al. Artificial intelligence in thoracic surgery: a review bridging innovation and clinical practice for the next generation of surgical care. J Clin Med, 2025, 14(8): 2047.
|
49. |
Nakanishi R, Morooka KI, Omori K, et al. Artificial intelligence-based prediction of recurrence after curative resection for colorectal cancer from digital pathological images. Ann Surg Oncol, 2023, 30(6): 3506-3514.
|
50. |
朱佳瑞, 滕琳, 宋立明, 等. 人工智能在放射影像中的应用. 科学通报, 2024: 1-17.Zhu J, Teng L, Song L, et al. The applications of artificial intelligence in radiographic imaging (in Chinese). Chin Sci Bull, 2024: 1-17.
|
51. |
Li Q, Kim J, Balagurunathan Y, et al. CT imaging features associated with recurrence in non-small cell lung cancer patients after stereotactic body radiotherapy. Radiat Oncol, 2017, 12(1): 158.
|
52. |
Bhattacharya K, Bhattacharya N, Kumar S, et al. Artificial intelligence in predicting postoperative surgical complications. Indian J Surg, 2024: 1-5.
|
53. |
Knight SR, Ng N, Tsanas A, et al. Mobile devices and wearable technology for measuring patient outcomes after surgery: a systematic review. NPJ Digit Med, 2021, 4(1): 157.
|
54. |
Lee J, Kong S, Shin S, et al. Wearable device–based intervention for promoting patient physical activity after lung cancer surgery: a nonrandomized clinical trial. JAMA Netw Open, 2024, 7(9): e2434180.
|
55. |
Lv C, Lu F, Zhou X, et al. Efficacy of a smartphone application assisting home-based rehabilitation and symptom management for patients with lung cancer undergoing video-assisted thoracoscopic lobectomy: a prospective, single-blinded, randomised control trial (POPPER study). Int J Surg, 2025, 111(1): 597-608.
|
56. |
Li YH, Li YL, Wei MY, et al. Innovation and challenges of artificial intelligence technology in personalized healthcare. Sci Rep, 2024, 14(1): 18994.
|
57. |
Geppert J, Asgharzadeh A, Brown A, et al. Software using artificial intelligence for nodule and cancer detection in CT lung cancer screening: systematic review of test accuracy studies. Thorax, 2024, 79(11): 1040-1049.
|
58. |
China national lung cancer screening guideline with low-dose computed tomography (2023 version). Chin Lung Cancer J, 2023, 26(1): 1-9.
|