Copyright © the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
1. | Gibaud B, Jannin P, Morandi X, et al. The role of image guidance in neurosurgery. Lancet Neurol, 2019, 18(1): 83-94. |
2. | Fuller SC, Strong EB. Computer applications in facial plastic and reconstructive surgery. Curr Opin Otolaryngol Head Neck Surg, 2007, 15(4): 233-237. |
3. | McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature, 2020, 577(7788): 89-94. |
4. | Nassiri F, Patil V, Yefet LS, et al. Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: a phase 1/2 trial. Nat Med, 2023, 29(6): 1370-1378. |
5. | Uchikov P, Khalid U, Kraev K, et al. Artificial intelligence in the diagnosis of colorectal cancer: A literature review. Diagnostics (Basel), 2024, 14(5): 528. doi: 10.3390/diagnostics14050528. |
6. | Nagtegaal ID, Marijnen CA, Kranenbarg EK, et al. Circumferential margin involvement is still an important predictor of local recurrence in rectal carcinoma: not one millimeter but two millimeters is the limit. Am J Surg Pathol, 2002, 26(3): 350-357. |
7. | Garcia-Granero E, Frasson M, Esclapez P, et al. Impact of tumor morphology on the accuracy of magnetic resonance imaging for predicting pathological response after neoadjuvant chemoradiotherapy in rectal cancer. Eur J Surg Oncol, 2024, 50(2): 107321. doi: 10.1016/j.ejso.2023.107321. |
8. | Xu Z, Li Y, Wang Y, et al. A deep learning quantified stroma-immune score to predict survival of patients with stage Ⅱ–Ⅲ colorectal cancer. Cancer Cell Int, 2021, 21(1): 585. doi: 10.1186/s12935-021-02297-w. |
9. | Liu Z, Liu Z, Anwar Z, et al. Deep learning for tumor delineation on multi-modal MRI in rectal cancer. Med Phys, 2021, 48(5): 2435-2444. |
10. | Zhou X, Li Y, Zhang L, et al. nnUNet-based automatic segmentation of rectal cancer in MRI for radiotherapy planning. Radiother Oncol, 2022, 167: 45-52. |
11. | Park YS, Lee CH, Kim JH, et al. Differentiation of focal fatty change in the liver from metastasis: Role of T1-weighted in-phase and opposed-phase gradient-echo MR imaging. Radiology, 2017, 284(2): 424-432. |
12. | Karcaaltincaba M, Akhan O. Imaging of hepatic steatosis and fatty sparing. AJR Am J Roentgenol, 2009, 192(4): 995-1001. |
13. | Lubner MG, Smith AD, Sandrasegaran K, et al. CT texture analysis: Definitions, applications, biologic correlates, and challenges. Radiographics, 2017, 37(5): 1483-1503. |
14. | Pickhardt PJ, Graffy PM, Reeder SB, et al. Quantification of liver fat content with CT and MRI: State of the art. Radiology, 2021, 299(2): 329-337. |
15. | Lao J, Chen Y, Li ZC, et al. Deep learning for radiomics-based heterogeneity analysis in colorectal cancer. Sci Rep, 2017, 7(1): 11351. doi: 10.1038/s41598-017-11553-x. |
16. | Wu J, Zhang Q, Zhao Y, et al. Spatiotemporal heterogeneity mapping in colorectal cancer via federated learning. Nat Commun, 2022, 13(1): 4567. doi: 10.1038/s41467-022-32170-x. |
17. | 李晓燕, 李晨, 陈灏源, 等. 人工智能在结直肠癌数字化病理图像分析中的应用. 协和医学杂志, 2022, 13(4): 542-548. |
18. | Yuan C, Wang B, Wang H, et al. T-cell receptor dynamics in digestive system cancers: A multi-layer machine learning approach for tumor diagnosis and staging. Front Immunol, 2025, 16: 1556165. doi: 10.3389/fimmu.2025.1556165. |
19. | Peng W, Wan L, Tong X, et al. Prospective and multi-reader evaluation of deep learning reconstruction-based accelerated rectal MRI: Image quality, diagnostic performance, and reading time. Eur Radiol, 2024, 34(11): 7438-7449. |
20. | Horie Y, Yoshio T, Aoyama K, et al. Deep learning detection of colorectal cancer wall invasion on endoscopic ultrasound. Gastrointest Endosc, 2020, 92(4): 831-838. |
21. | Wang X, Zhao Y, Zhang L, et al. AI-assisted staging of colorectal cancer T categories using CT-based radiomics. Radiology, 2022, 303(2): 351-360. |
22. | Liang Z, Wang Q, Li X, et al. Automatic T staging of rectal cancer using MRI-based deep learning. J Magn Reson Imaging, 2021, 54(3): 789-798. |
23. | Glynne-Jones R, Wyrwicz L, Tiret E, et al. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2018, 29(Suppl 4): iv263. doi: 10.1093/annonc/mdy161. |
24. | Zhang L, Tan J, Han D, et al. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today, 2017, 22(11): 1680-1685. |
25. | Kwak MS, Lee HH, Yang JM, et al. Deep convolutional neural network-based lymph node metastasis prediction for colon cancer using histopathological images. Front Oncol, 2021, 10: 619803. doi: 10.3389/fonc.2020.619803. |
26. | Pai RK, Hartman D, Schaeffer DF, et al. Development and initial validation of a deep learning algorithm to quantify histological features in colorectal carcinoma including tumour budding/poorly differentiated clusters. Histopathology, 2021, 79(3): 391-405. |
27. | Mo S, Zhou Z, Dai W, et al. Development and external validation of a predictive scoring system associated with metastasis of T1-2 colorectal tumors to lymph nodes. Clin Transl Med, 2020, 10(1): 275-287. |
28. | Kiehl L, Kuntz S, Höhn J, et al. Deep learning can predict lymph node status directly from histology in colorectal cancer. Eur J Cancer, 2021, 157: 464-473. |
29. | Zhu C, Liang J, Xu M, et al. AI-assisted lymph node staging in rectal cancer using endoscopic ultrasound: A multicenter randomized controlled trial. Endoscopy, 2023, 55(3): 234-241. |
30. | Wang L, Chen R, Li X, et al. Multimodal fusion of CT and MRI for colorectal cancer staging using deep learning. IEEE Trans Med Imaging, 2021, 40(4): 1234-1245. |
31. | Zhao X, Xie P, Wang M, et al. Deep learning-based fully automated detection and segmentation of lymph nodes on multiparametric-mri for rectal cancer: A multicentre study. EBioMedicine, 2020, 56: 102780. doi: 10.1016/j.ebiom.2020.102780. |
32. | Chen YY, Lin CH, Hsu CC, et al. Deep learning for automatic detection of colorectal liver metastases on CT. Radiology, 2022, 305(3): 648-658. |
33. | Feng S, Zhou M, Huang Z, et al. A machine learning-based prediction model for colorectal liver metastasis. Clin Exp Med, 2025, 25(1): 156. doi: 10.1007/s10238-025-01699-8. |
34. | Bashir U, Wang C, Smillie R, et al. Deep learning for liver lesion segmentation and classification on staging CT scans of colorectal cancer patients: a multi-site technical validation study. Clin Radiol, 2025, 85: 106914. doi: 10.1016/j.crad.2025.106914. |
35. | Chizhikova M, López-Úbeda P, Martín-Noguerol T, et al. Automatic TNM staging of colorectal cancer radiology reports using pre-trained language models. Comput Methods Programs Biomed, 2025, 259: 108515. doi: 10.1016/j.cmpb.2024.108515. |
36. | Abu-Freha N, Afawi Z, Yousef M, et al. A machine learning approach to differentiate stage Ⅳ from stage Ⅰ colorectal cancer. Comput Biol Med, 2025, 191: 110179. doi: 10.1016/j.compbiomed.2025.110179. |
37. | Guan X, Yu G, Zhang W, et al. An easy-to-use artificial intelligence preoperative lymph node metastasis predictor (LN-MASTER) in rectal cancer based on a privacy-preserving computing platform: multicenter retrospective cohort study. Int J Surg, 2023, 109(3): 255-265. |
38. | Zhang XY, Wang L, Zhu HT, et al. Predicting rectal cancer response to neoadjuvant chemoradiotherapy using deep learning of diffusion kurtosis MRI. Radiology, 2020, 296(1): 56-64. |
39. | Bibault JE, Giraud P, Housset M, et al. Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci Rep, 2018, 8(1): 12611. doi: 10.1038/s41598-018-30657-6. |
40. | Ouyang G, Chen Z, Dou M, et al. Predicting rectal cancer response to total neoadjuvant treatment using an artificial intelligence model based on magnetic resonance imaging and clinical data. Technol Cancer Res Treat, 2023, 22: 15330338231186467. doi: 10.1177/15330338231186467. |
41. | Argilés G, Tabernero J, Labianca R, et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2020, 31(10): 1291-1305. |
42. | Bai F, Liao L, Tang Y, et al. RCMIX model based on pre-treatment MRI imaging predicts T-downstage in MRI-cT4 stage rectal cancer. Cancer Lett, 2025, 628: 217871. doi: 10.1016/j.canlet.2025.217871. |
43. | Zhang XY, Wang L, Zhu HT, et al. Predicting rectal cancer response to neoadjuvant chemoradiotherapy using deep learning of diffusion kurtosis MRI. Radiology, 2020, 296(1): 56-64. |
44. | Shaish H, Aukerman A, Vanguri R, et al. Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study. Eur Radiol, 2020, 30(11): 6263-6273. |
45. | Feng L, Liu Z, Li C, et al. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A multicentre observational study. Lancet Digit Health, 2022, 4(1): e8-e17. doi: 10.1016/S2589-7500(21)00215-6. |
46. | Qiu B, Shen Z, Wu S, et al. A machine learning-based model for predicting distant metastasis in patients with rectal cancer. Front Oncol, 2023, 13: 1235121. doi: 10.3389/fonc.2023.1235121. |
47. | Spohn SKB, Aebersold DM, Albrecht C, et al. Biomarkers in prostate cancer: current status and future directions in radiotherapy-statement from the Prostate Cancer Working Group of the German Society of Radiation Oncology (DEGRO). Strahlenther Onkol, 2025 Mar 25. doi: 10.1007/s00066-025-02388-x. |
48. | Chevalier O, Dubey G, Benkabbou A, et al. Comprehensive overview of artificial intelligence in surgery: A systematic review and perspectives. Pflugers Arch, 2025, 477(4): 617-626. |
49. | Caredda C, Lange F, Giannoni L, et al. Digital instrument simulator to optimize the development of hyperspectral systems: Application for intraoperative functional brain mapping. J Biomed Opt, 2025, 30(2): 023513. doi: 10.1117/1.JBO.30.2.023513. |
50. | Shindoh J, Makuuchi M, Matsuyama Y, et al. Complete removal of the tumor-bearing portal territory decreases local tumor recurrence and improves disease-specific survival of patients with hepatocellular carcinoma. J Hepatol, 2016, 64(3): 594-600. |
51. | Rickles AS, Dietz DW, Chang GJ, et al. High rate of positive circumferential resection margins following rectal cancer surgery: A call to action. Ann Surg, 2015, 262(6): 891-898. |
52. | Atallah S, Nassif G, Larach S. Stereotactic navigation for TAMIS-TME: opening the gateway to frameless, image-guided abdominal and pelvic surgery. Surg Endosc, 2015, 29(1): 207-211. |
53. | Atallah S, Martin-Perez B, Larach S. Image-guided real-time navigation for transanal total mesorectal excision: a pilot study. Tech Coloproctol, 2015, 19(11): 679-684. |
54. | Atallah S, Parra-Davila E, Melani AGF, et al. Robotic-assisted stereotactic real-time navigation: Initial clinical experience and feasibility for rectal cancer surgery. Tech Coloproctol, 2019, 23(1): 53-63. |
55. | Wagner M, Gondan M, Zöllner C, et al. Electromagnetic organ tracking allows for real-time compensation of tissue shift in image-guided laparoscopic rectal surgery: Results of a phantom study. Surg Endosc, 2016, 30(2): 495-503. |
56. | Kok END, Eppenga R, Kuhlmann KFD, et al. Accurate surgical navigation with real-time tumor tracking in cancer surgery. NPJ Precis Oncol, 2020, 4: 8. doi: 10.1038/s41698-020-0115-0. |
57. | Campa-Thompson M, Weir R, Calcetera N, et al. Pathologic processing of the total mesorectal excision. Clin Colon Rectal Surg, 2015, 28(1): 43-52. |
58. | Cahill RA, O’Shea DF, Khan MF, et al. Artificial intelligence indocyanine green (ICG) perfusion for colorectal cancer intra-operative tissue classification. Br J Surg, 2021, 108(1): 5-9. |
59. | Kitaguchi D, Takeshita N, Matsuzaki H, et al. Automated laparoscopic colorectal surgery workflow recognition using artificial intelligence: Experimental research. Int J Surg, 2020, 79: 88-94. |
60. | Park SH, Park HM, Baek KR, et al. Artificial intelligence based real-time microcirculation analysis system for laparoscopic colorectal surgery. World J Gastroenterol, 2020, 26(44): 6945-6962. |
61. | 中国医师协会外科医师分会肝脏外科医师委员会. 吲哚菁绿荧光成像技术在肝脏外科应用中国专家共识(2023版). 中国实用外科杂志, 2023, 43(4): 371-383. |
62. | Dalli J, Epperlein JP, Hardy NP, et al. Clinical and computational development of a patient-calibrated ICGFA bowel transection recommender. Surg Endosc, 2024, 38(6): 3212-3222. |
63. | 程小飞, 吴国生. 人工智能在结直肠癌术后加速康复管理中的初步探索与思考. 加速康复外科杂志, 2025, 8(1): 1-7. |
64. | 潘华峰, 龚冠闻, 柳欣欣, 等. 基于人工智能的连续肠鸣音听诊记录仪的临床应用. 中华医学杂志, 2020, 100(40): 3157-3160. |
65. | 邵胜利. 人工智能预测胃肠手术后的吻合口漏. 武汉: 华中科技大学, 2023. |
66. | 崔洪铭. 基于人工智能的胃肠道肿瘤患者术后短期并发症的预测研. 青岛: 青岛大学, 2023. |
67. | 王培培, 吴斌. 人工智能技术在结直肠癌全程管理中的应用. 基础医学与临床, 2020, 40(11): 1570-1574. |
68. | Awaysheh A, Wilcke J, Elvinger F, et al. Review of medical decision support and machine-learning methods. Vet Pathol, 2019, 56(4): 512-525. |
69. | Choudhury A, Asan O. Role of artificial intelligence in patient safety outcomes: Systematic literature review. JMIR Med Inform, 2020, 8(7): e18599. doi: 10.2196/18599. |
- 1. Gibaud B, Jannin P, Morandi X, et al. The role of image guidance in neurosurgery. Lancet Neurol, 2019, 18(1): 83-94.
- 2. Fuller SC, Strong EB. Computer applications in facial plastic and reconstructive surgery. Curr Opin Otolaryngol Head Neck Surg, 2007, 15(4): 233-237.
- 3. McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature, 2020, 577(7788): 89-94.
- 4. Nassiri F, Patil V, Yefet LS, et al. Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: a phase 1/2 trial. Nat Med, 2023, 29(6): 1370-1378.
- 5. Uchikov P, Khalid U, Kraev K, et al. Artificial intelligence in the diagnosis of colorectal cancer: A literature review. Diagnostics (Basel), 2024, 14(5): 528. doi: 10.3390/diagnostics14050528.
- 6. Nagtegaal ID, Marijnen CA, Kranenbarg EK, et al. Circumferential margin involvement is still an important predictor of local recurrence in rectal carcinoma: not one millimeter but two millimeters is the limit. Am J Surg Pathol, 2002, 26(3): 350-357.
- 7. Garcia-Granero E, Frasson M, Esclapez P, et al. Impact of tumor morphology on the accuracy of magnetic resonance imaging for predicting pathological response after neoadjuvant chemoradiotherapy in rectal cancer. Eur J Surg Oncol, 2024, 50(2): 107321. doi: 10.1016/j.ejso.2023.107321.
- 8. Xu Z, Li Y, Wang Y, et al. A deep learning quantified stroma-immune score to predict survival of patients with stage Ⅱ–Ⅲ colorectal cancer. Cancer Cell Int, 2021, 21(1): 585. doi: 10.1186/s12935-021-02297-w.
- 9. Liu Z, Liu Z, Anwar Z, et al. Deep learning for tumor delineation on multi-modal MRI in rectal cancer. Med Phys, 2021, 48(5): 2435-2444.
- 10. Zhou X, Li Y, Zhang L, et al. nnUNet-based automatic segmentation of rectal cancer in MRI for radiotherapy planning. Radiother Oncol, 2022, 167: 45-52.
- 11. Park YS, Lee CH, Kim JH, et al. Differentiation of focal fatty change in the liver from metastasis: Role of T1-weighted in-phase and opposed-phase gradient-echo MR imaging. Radiology, 2017, 284(2): 424-432.
- 12. Karcaaltincaba M, Akhan O. Imaging of hepatic steatosis and fatty sparing. AJR Am J Roentgenol, 2009, 192(4): 995-1001.
- 13. Lubner MG, Smith AD, Sandrasegaran K, et al. CT texture analysis: Definitions, applications, biologic correlates, and challenges. Radiographics, 2017, 37(5): 1483-1503.
- 14. Pickhardt PJ, Graffy PM, Reeder SB, et al. Quantification of liver fat content with CT and MRI: State of the art. Radiology, 2021, 299(2): 329-337.
- 15. Lao J, Chen Y, Li ZC, et al. Deep learning for radiomics-based heterogeneity analysis in colorectal cancer. Sci Rep, 2017, 7(1): 11351. doi: 10.1038/s41598-017-11553-x.
- 16. Wu J, Zhang Q, Zhao Y, et al. Spatiotemporal heterogeneity mapping in colorectal cancer via federated learning. Nat Commun, 2022, 13(1): 4567. doi: 10.1038/s41467-022-32170-x.
- 17. 李晓燕, 李晨, 陈灏源, 等. 人工智能在结直肠癌数字化病理图像分析中的应用. 协和医学杂志, 2022, 13(4): 542-548.
- 18. Yuan C, Wang B, Wang H, et al. T-cell receptor dynamics in digestive system cancers: A multi-layer machine learning approach for tumor diagnosis and staging. Front Immunol, 2025, 16: 1556165. doi: 10.3389/fimmu.2025.1556165.
- 19. Peng W, Wan L, Tong X, et al. Prospective and multi-reader evaluation of deep learning reconstruction-based accelerated rectal MRI: Image quality, diagnostic performance, and reading time. Eur Radiol, 2024, 34(11): 7438-7449.
- 20. Horie Y, Yoshio T, Aoyama K, et al. Deep learning detection of colorectal cancer wall invasion on endoscopic ultrasound. Gastrointest Endosc, 2020, 92(4): 831-838.
- 21. Wang X, Zhao Y, Zhang L, et al. AI-assisted staging of colorectal cancer T categories using CT-based radiomics. Radiology, 2022, 303(2): 351-360.
- 22. Liang Z, Wang Q, Li X, et al. Automatic T staging of rectal cancer using MRI-based deep learning. J Magn Reson Imaging, 2021, 54(3): 789-798.
- 23. Glynne-Jones R, Wyrwicz L, Tiret E, et al. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2018, 29(Suppl 4): iv263. doi: 10.1093/annonc/mdy161.
- 24. Zhang L, Tan J, Han D, et al. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today, 2017, 22(11): 1680-1685.
- 25. Kwak MS, Lee HH, Yang JM, et al. Deep convolutional neural network-based lymph node metastasis prediction for colon cancer using histopathological images. Front Oncol, 2021, 10: 619803. doi: 10.3389/fonc.2020.619803.
- 26. Pai RK, Hartman D, Schaeffer DF, et al. Development and initial validation of a deep learning algorithm to quantify histological features in colorectal carcinoma including tumour budding/poorly differentiated clusters. Histopathology, 2021, 79(3): 391-405.
- 27. Mo S, Zhou Z, Dai W, et al. Development and external validation of a predictive scoring system associated with metastasis of T1-2 colorectal tumors to lymph nodes. Clin Transl Med, 2020, 10(1): 275-287.
- 28. Kiehl L, Kuntz S, Höhn J, et al. Deep learning can predict lymph node status directly from histology in colorectal cancer. Eur J Cancer, 2021, 157: 464-473.
- 29. Zhu C, Liang J, Xu M, et al. AI-assisted lymph node staging in rectal cancer using endoscopic ultrasound: A multicenter randomized controlled trial. Endoscopy, 2023, 55(3): 234-241.
- 30. Wang L, Chen R, Li X, et al. Multimodal fusion of CT and MRI for colorectal cancer staging using deep learning. IEEE Trans Med Imaging, 2021, 40(4): 1234-1245.
- 31. Zhao X, Xie P, Wang M, et al. Deep learning-based fully automated detection and segmentation of lymph nodes on multiparametric-mri for rectal cancer: A multicentre study. EBioMedicine, 2020, 56: 102780. doi: 10.1016/j.ebiom.2020.102780.
- 32. Chen YY, Lin CH, Hsu CC, et al. Deep learning for automatic detection of colorectal liver metastases on CT. Radiology, 2022, 305(3): 648-658.
- 33. Feng S, Zhou M, Huang Z, et al. A machine learning-based prediction model for colorectal liver metastasis. Clin Exp Med, 2025, 25(1): 156. doi: 10.1007/s10238-025-01699-8.
- 34. Bashir U, Wang C, Smillie R, et al. Deep learning for liver lesion segmentation and classification on staging CT scans of colorectal cancer patients: a multi-site technical validation study. Clin Radiol, 2025, 85: 106914. doi: 10.1016/j.crad.2025.106914.
- 35. Chizhikova M, López-Úbeda P, Martín-Noguerol T, et al. Automatic TNM staging of colorectal cancer radiology reports using pre-trained language models. Comput Methods Programs Biomed, 2025, 259: 108515. doi: 10.1016/j.cmpb.2024.108515.
- 36. Abu-Freha N, Afawi Z, Yousef M, et al. A machine learning approach to differentiate stage Ⅳ from stage Ⅰ colorectal cancer. Comput Biol Med, 2025, 191: 110179. doi: 10.1016/j.compbiomed.2025.110179.
- 37. Guan X, Yu G, Zhang W, et al. An easy-to-use artificial intelligence preoperative lymph node metastasis predictor (LN-MASTER) in rectal cancer based on a privacy-preserving computing platform: multicenter retrospective cohort study. Int J Surg, 2023, 109(3): 255-265.
- 38. Zhang XY, Wang L, Zhu HT, et al. Predicting rectal cancer response to neoadjuvant chemoradiotherapy using deep learning of diffusion kurtosis MRI. Radiology, 2020, 296(1): 56-64.
- 39. Bibault JE, Giraud P, Housset M, et al. Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci Rep, 2018, 8(1): 12611. doi: 10.1038/s41598-018-30657-6.
- 40. Ouyang G, Chen Z, Dou M, et al. Predicting rectal cancer response to total neoadjuvant treatment using an artificial intelligence model based on magnetic resonance imaging and clinical data. Technol Cancer Res Treat, 2023, 22: 15330338231186467. doi: 10.1177/15330338231186467.
- 41. Argilés G, Tabernero J, Labianca R, et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2020, 31(10): 1291-1305.
- 42. Bai F, Liao L, Tang Y, et al. RCMIX model based on pre-treatment MRI imaging predicts T-downstage in MRI-cT4 stage rectal cancer. Cancer Lett, 2025, 628: 217871. doi: 10.1016/j.canlet.2025.217871.
- 43. Zhang XY, Wang L, Zhu HT, et al. Predicting rectal cancer response to neoadjuvant chemoradiotherapy using deep learning of diffusion kurtosis MRI. Radiology, 2020, 296(1): 56-64.
- 44. Shaish H, Aukerman A, Vanguri R, et al. Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study. Eur Radiol, 2020, 30(11): 6263-6273.
- 45. Feng L, Liu Z, Li C, et al. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A multicentre observational study. Lancet Digit Health, 2022, 4(1): e8-e17. doi: 10.1016/S2589-7500(21)00215-6.
- 46. Qiu B, Shen Z, Wu S, et al. A machine learning-based model for predicting distant metastasis in patients with rectal cancer. Front Oncol, 2023, 13: 1235121. doi: 10.3389/fonc.2023.1235121.
- 47. Spohn SKB, Aebersold DM, Albrecht C, et al. Biomarkers in prostate cancer: current status and future directions in radiotherapy-statement from the Prostate Cancer Working Group of the German Society of Radiation Oncology (DEGRO). Strahlenther Onkol, 2025 Mar 25. doi: 10.1007/s00066-025-02388-x.
- 48. Chevalier O, Dubey G, Benkabbou A, et al. Comprehensive overview of artificial intelligence in surgery: A systematic review and perspectives. Pflugers Arch, 2025, 477(4): 617-626.
- 49. Caredda C, Lange F, Giannoni L, et al. Digital instrument simulator to optimize the development of hyperspectral systems: Application for intraoperative functional brain mapping. J Biomed Opt, 2025, 30(2): 023513. doi: 10.1117/1.JBO.30.2.023513.
- 50. Shindoh J, Makuuchi M, Matsuyama Y, et al. Complete removal of the tumor-bearing portal territory decreases local tumor recurrence and improves disease-specific survival of patients with hepatocellular carcinoma. J Hepatol, 2016, 64(3): 594-600.
- 51. Rickles AS, Dietz DW, Chang GJ, et al. High rate of positive circumferential resection margins following rectal cancer surgery: A call to action. Ann Surg, 2015, 262(6): 891-898.
- 52. Atallah S, Nassif G, Larach S. Stereotactic navigation for TAMIS-TME: opening the gateway to frameless, image-guided abdominal and pelvic surgery. Surg Endosc, 2015, 29(1): 207-211.
- 53. Atallah S, Martin-Perez B, Larach S. Image-guided real-time navigation for transanal total mesorectal excision: a pilot study. Tech Coloproctol, 2015, 19(11): 679-684.
- 54. Atallah S, Parra-Davila E, Melani AGF, et al. Robotic-assisted stereotactic real-time navigation: Initial clinical experience and feasibility for rectal cancer surgery. Tech Coloproctol, 2019, 23(1): 53-63.
- 55. Wagner M, Gondan M, Zöllner C, et al. Electromagnetic organ tracking allows for real-time compensation of tissue shift in image-guided laparoscopic rectal surgery: Results of a phantom study. Surg Endosc, 2016, 30(2): 495-503.
- 56. Kok END, Eppenga R, Kuhlmann KFD, et al. Accurate surgical navigation with real-time tumor tracking in cancer surgery. NPJ Precis Oncol, 2020, 4: 8. doi: 10.1038/s41698-020-0115-0.
- 57. Campa-Thompson M, Weir R, Calcetera N, et al. Pathologic processing of the total mesorectal excision. Clin Colon Rectal Surg, 2015, 28(1): 43-52.
- 58. Cahill RA, O’Shea DF, Khan MF, et al. Artificial intelligence indocyanine green (ICG) perfusion for colorectal cancer intra-operative tissue classification. Br J Surg, 2021, 108(1): 5-9.
- 59. Kitaguchi D, Takeshita N, Matsuzaki H, et al. Automated laparoscopic colorectal surgery workflow recognition using artificial intelligence: Experimental research. Int J Surg, 2020, 79: 88-94.
- 60. Park SH, Park HM, Baek KR, et al. Artificial intelligence based real-time microcirculation analysis system for laparoscopic colorectal surgery. World J Gastroenterol, 2020, 26(44): 6945-6962.
- 61. 中国医师协会外科医师分会肝脏外科医师委员会. 吲哚菁绿荧光成像技术在肝脏外科应用中国专家共识(2023版). 中国实用外科杂志, 2023, 43(4): 371-383.
- 62. Dalli J, Epperlein JP, Hardy NP, et al. Clinical and computational development of a patient-calibrated ICGFA bowel transection recommender. Surg Endosc, 2024, 38(6): 3212-3222.
- 63. 程小飞, 吴国生. 人工智能在结直肠癌术后加速康复管理中的初步探索与思考. 加速康复外科杂志, 2025, 8(1): 1-7.
- 64. 潘华峰, 龚冠闻, 柳欣欣, 等. 基于人工智能的连续肠鸣音听诊记录仪的临床应用. 中华医学杂志, 2020, 100(40): 3157-3160.
- 65. 邵胜利. 人工智能预测胃肠手术后的吻合口漏. 武汉: 华中科技大学, 2023.
- 66. 崔洪铭. 基于人工智能的胃肠道肿瘤患者术后短期并发症的预测研. 青岛: 青岛大学, 2023.
- 67. 王培培, 吴斌. 人工智能技术在结直肠癌全程管理中的应用. 基础医学与临床, 2020, 40(11): 1570-1574.
- 68. Awaysheh A, Wilcke J, Elvinger F, et al. Review of medical decision support and machine-learning methods. Vet Pathol, 2019, 56(4): 512-525.
- 69. Choudhury A, Asan O. Role of artificial intelligence in patient safety outcomes: Systematic literature review. JMIR Med Inform, 2020, 8(7): e18599. doi: 10.2196/18599.