1. |
Smyth EC, Nilsson M, Grabsch HI, et al. Gastric cancer. Lancet, 2020, 396(10251): 635-648.
|
2. |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263.
|
3. |
李茁钰, 刘凯, 张维汉, 等. 全球及中国胃癌的流行病学特点及趋势: 2018–2022《全球癌症统计报告》解读. 中国普外基础与临床杂志, 2024, 31(10): 1236-1245.
|
4. |
姚一菲, 孙可欣, 郑荣寿. 《2022全球癌症统计报告》解读: 中国与全球对比. 中国普外基础与临床杂志, 2024, 31(7): 769-780.
|
5. |
Huang C, Liu H, Hu Y, et al. Laparoscopic vs open distal gastrectomy for locally advanced gastric cancer: five-year outcomes from the CLASS-01 randomized clinical trial. JAMA Surg, 2022, 157(1): 9-17.
|
6. |
Yu J, Huang C, Sun Y, et al. Effect of laparoscopic vs open distal gastrectomy on 3-year disease-free survival in patients with locally advanced gastric cancer: the CLASS-01 randomized clinical trial. JAMA, 2019, 321(20): 1983-1992.
|
7. |
Park SH, Hyung WJ, Yang HK, et al. Standard follow-up after curative surgery for advanced gastric cancer: secondary analysis of a multicentre randomized clinical trial (KLASS-02). Br J Surg, 2023, 110(4): 449-455.
|
8. |
Son SY, Hur H, Hyung WJ, et al. Laparoscopic vs open distal gastrectomy for locally advanced gastric cancer: 5-year outcomes of the KLASS-02 randomized clinical trial. JAMA Surg, 2022, 157(10): 879-886.
|
9. |
Kim W, Kim HH, Han SU, et al. Decreased morbidity of laparoscopic distal gastrectomy compared with open distal gastrectomy for stage Ⅰ gastric Cancer: short-term outcomes from a multicenter randomized controlled trial (KLASS-01). Ann Surg, 2016, 263(1): 28-35.
|
10. |
Zaninotto G, Costantini M. Are elevated liver enzymes and bilirubin levels significant after laparoscopic cholecystectomy in the absence of bile duct injury?. Ann Surg, 1995, 221(4): 433.
|
11. |
Guven HE, Oral S. Liver enzyme alterations after laparoscopic cholecystectomy. J Gastrointestin Liver Dis, 2007, 16(4): 391-394.
|
12. |
Hasukic S, Kosuta D, Muminhodzic K. Comparison of postoperative hepatic function between laparoscopic and open cholecystectomy. Med Princ Pract, 2005, 14(3): 147-150.
|
13. |
Koirala R, Shakya VC, Khania S, et al. Rise in liver enzymes after laproscopic cholecystectomy: a transient phenomenon. Nepal Med Coll J, 2012, 14(3): 223-226.
|
14. |
Sakorafas G, Anagnostopoulos G, Stafyla V, et al. Elevation of serum liver enzymes after laparoscopic cholecystectomy. N Z Med J, 2005, 118(1210): U1317.
|
15. |
Etoh T, Shiraishi N, Tajima M, et al. Transient liver dysfunction after laparoscopic gastrectomy for gastric cancer patients. World J Surg, 2007, 31(5): 1115-1120.
|
16. |
Kim SG, Song KY, Kim SN, et al. Alterations in hepatic function after laparoscopic assisted distal gastrectomy: a prospective study. J Korean Surg Soc, 2007, 72(1): 46-50.
|
17. |
Nguyen NT, Braley S, Fleming NW, et al. Comparison of postoperative hepatic function after laparoscopic versus open gastric bypass. Am J Surg, 2003, 186(1): 40-44.
|
18. |
Wu J, Feng H, Wang ZY, et al. Factors affecting liver function abnormalities after laparoscopic esophageal hiatal hernia repair. Surg Laparosc Endosc Percutan Tech, 2025, 35(2): e1350. doi: 10.1097/SLE.0000000000001350.
|
19. |
Jeong GA, Cho GS, Shin EJ, et al. Liver function alterations after laparoscopy-assisted gastrectomy for gastric cancer and its clinical significance. World J Gastroenterol, 2011, 17(3): 372-378.
|
20. |
Guerrini GP, Esposito G, Magistri P, et al. Robotic versus laparoscopic gastrectomy for gastric cancer: the largest meta-analysis. Int J Surg, 2020, 82: 210-228.
|
21. |
Xiong J, Nunes QM, Tan C, et al. Comparison of short-term clinical outcomes between robotic and laparoscopic gastrectomy for gastric cancer: a meta-analysis of 2 495 patients. J Laparoendosc Adv Surg Tech A, 2013, 23(12): 965-976.
|
22. |
Singal AK, Bataller R, Ahn J, et al. ACG clinical guideline: alcoholic liver disease. Am J Gastroenterol, 2018, 113(2): 175-194.
|
23. |
Yan C, Hu W, Tu J, et al. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. J Transl Med, 2023, 21(1): 300. doi: 10.1186/s12967-023-04166-8.
|
24. |
Ceni E, Mello T, Galli A. Pathogenesis of alcoholic liver disease: role of oxidative metabolism. World J Gastroenterol, 2014, 20(47): 17756-17772.
|
25. |
Osna NA, Donohue TM Jr, Kharbanda KK. Alcoholic liver disease: pathogenesis and current management. Alcohol Res, 2017, 38(2): 147-161.
|
26. |
于小会. 乳腺癌患者化疗后肝功能异常的危险因素分析. 锦州医科大学学报, 2024, 45(2): 66-70.
|
27. |
Smith NJ, Watchalotone S, Sandhu S. Drug-induced liver injury secondary to endocrine therapy with aromatase inhibitors: a case report. Cureus, 2025, 17(3): e80795. doi: 10.7759/cureus.80795.
|
28. |
杜晨牧. 急性白血病化疗对肝功能的影响. 杭州: 浙江大学, 2011.
|
29. |
朱聚龙, 翟景明, 范永刚. 胃癌术后化疗患者肝功能异常因素分析. 医学研究杂志, 2019, 48(9): 169-173.
|
30. |
Agostini J, Benoist S, Seman M, et al. Identification of molecular pathways involved in oxaliplatin-associated sinusoidal dilatation. J Hepatol, 2012, 56(4): 869-876.
|
31. |
Robinson SM, Mann J, Vasilaki A, et al. Pathogenesis of FOLFOX induced sinusoidal obstruction syndrome in a murine chemotherapy model. J Hepatol, 2013, 59(2): 318-326.
|
32. |
Cheng X, Zhu C, Chen Y, et al. Huaier relieves oxaliplatin-induced hepatotoxicity through activation of the PI3K/AKT/Nrf2 signaling pathway in C57BL/6 mice. Heliyon, 2024, 10(17): e37010. doi: 10.1016/j.heliyon.2024.e37010.
|
33. |
Remash D, Prince DS, McKenzie C, et al. Immune checkpoint inhibitor-related hepatotoxicity: a review. World J Gastroenterol, 2021, 27(32): 5376-5391.
|
34. |
Wang DY, Salem JE, Cohen JV, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol, 2018, 4(12): 1721-1728.
|
35. |
Martins F, Sofiya L, Sykiotis GP, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol, 2019, 16(9): 563-580.
|
36. |
Yin Q, Wu L, Han L, et al. Immune-related adverse events of immune checkpoint inhibitors: a review. Front Immunol, 2023, 14: 1167975. doi: 10.3389/fimmu.2023.1167975.
|
37. |
Tao G, Huang J, Moorthy B, et al. Potential role of drug metabolizing enzymes in chemotherapy-induced gastrointestinal toxicity and hepatotoxicity. Expert Opin Drug Metab Toxicol, 2020, 16(11): 1109-1124.
|
38. |
Liu J, Xiao Q, Xiao J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther, 2022, 7(1): 3. doi: 10.1038/s41392-021-00762-6.
|
39. |
Hagström H, Tynelius P, Rasmussen F. High BMI in late adolescence predicts future severe liver disease and hepatocellular carcinoma: a national, population-based cohort study in 1. 2 million men. Gut, 2018, 67(8): 1536-1542.
|
40. |
Kroh A, Schmitz S, Köhne S, et al. Sleeve-gastrectomy results in improved metabolism and a massive stress response of the liver proteome in a mouse model of metabolic dysfunction-associated steatohepatitis. Heliyon, 2024, 10(21): e38678. doi: 10.1016/j.heliyon.2024.e38678.
|
41. |
Li X, Gao P, Niu J. Metabolic comorbidities and risk of development and severity of drug-induced liver injury. Biomed Res Int, 2019, 2019: 8764093. doi: 10.1155/2019/8764093.
|
42. |
Lucena MI, Andrade RJ, Kaplowitz N, et al. Phenotypic characterization of idiosyncratic drug-induced liver injury: the influence of age and sex. Hepatology, 2009, 49(6): 2001-2009.
|
43. |
Weersink RA, Alvarez-Alvarez I, Medina-Cáliz I, et al. Clinical characteristics and outcome of drug-induced liver injury in the older patients: from the young-old to the oldest-old. Clin Pharmacol Ther, 2021, 109(4): 1147-1158.
|
44. |
Han YZ, Guo YM, Xiong P, et al. Age-associated risk of liver-related adverse drug reactions. Front Med (Lausanne), 2022, 9: 832557. doi: 10.3389/fmed.2022.832557.
|
45. |
Kurt Z, Barrere-Cain R, LaGuardia J, et al. Tissue-specific pathways and networks underlying sexual dimorphism in non-alcoholic fatty liver disease. Biol Sex Differ, 2018, 9(1): 46. doi: 10.1186/s13293-018-0205-7.
|
46. |
Gurka MJ, Vishnu A, Santen RJ, et al. Progression of metabolic syndrome severity during the menopausal transition. J Am Heart Assoc, 2016, 5(8): e003609. doi: 10.1161/JAHA.116.003609.
|
47. |
Palatini P, Orlando R, De Martin S. The effect of liver disease on inhibitory and plasma protein-binding displacement interactions: an update. Expert Opin Drug Metab Toxicol, 2010, 6(10): 1215-1230.
|
48. |
Roelfsema F, Veldhuis JD. Growth hormone dynamics in healthy adults are related to age and sex and strongly dependent on body mass index. Neuroendocrinology, 2016, 103(3-4): 335-344.
|
49. |
Hunt CM, Westerkam WR, Stave GM. Effect of age and gender on the activity of human hepatic CYP3A. Biochem Pharmacol, 1992, 44(2): 275-283.
|
50. |
George N, Chen M, Yuen N, et al. Interplay of gender, age and drug properties on reporting frequency of drug-induced liver injury. Regul Toxicol Pharmacol, 2018, 94: 101-107.
|
51. |
Fattinger K, Roos M, Vergères P, et al. Epidemiology of drug exposure and adverse drug reactions in two swiss departments of internal medicine. Br J Clin Pharmacol, 2000, 49(2): 158-167.
|
52. |
Hallajzadeh J, Khoramdad M, Izadi N, et al. Metabolic syndrome and its components in premenopausal and postmenopausal women: a comprehensive systematic review and meta-analysis on observational studies. Menopause, 2018, 25(10): 1155-1164.
|
53. |
Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies. Nat Med, 2018, 24(7): 908-922.
|
54. |
Ballestri S, Nascimbeni F, Baldelli E, et al. NAFLD as a sexual dimorphic disease: role of gender and reproductive status in the development and progression of nonalcoholic fatty liver disease and inherent cardiovascular risk. Adv Ther, 2017, 34(6): 1291-1326.
|
55. |
Cho J, Kim L, Li Z, et al. Sex bias in experimental immune-mediated, drug-induced liver injury in BALB/c mice: suggested roles for Tregs, estrogen, and IL-6. PLoS One, 2013, 8(4): e61186. doi: 10.1371/journal.pone.0061186.
|
56. |
Toyoda Y, Miyashita T, Endo S, et al. Estradiol and progesterone modulate halothane-induced liver injury in mice. Toxicol Lett, 2011, 204(1): 17-24.
|
57. |
Court MH. Interindividual variability in hepatic drug glucuronidation: studies into the role of age, sex, enzyme inducers, and genetic polymorphism using the human liver bank as a model system. Drug Metab Rev, 2010, 42(1): 209-224.
|
58. |
Taylor RM, Tujios S, Jinjuvadia K, et al. Short and long-term outcomes in patients with acute liver failure due to ischemic hepatitis. Dig Dis Sci, 2012, 57(3): 777-785.
|