1. |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263.
|
2. |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
|
3. |
Cananzi FCM, Biondi A, Agnes A, et al. Optimal predictors of postoperative complications after gastrectomy: results from the procalcitonin and C-reactive protein for the early diagnosis of anastomotic leakage in esophagogastric surgery (PEDALES) study. J Gastrointest Surg, 2023, 27(3): 478-488.
|
4. |
Caruso S, Giudicissi R, Mariatti M, et al. Laparoscopic vs. open gastrectomy for locally advanced gastric cancer: a propensity score-matched retrospective case-control study. Curr Oncol, 2022, 29(3): 1840-1865.
|
5. |
Chittawadagi B, Nayak SK, Ramakrishnan P, et al. Laparoscopic D2 gastrectomy in advanced gastric cancer: Postoperative outcomes and long-term survival analysis. Asian J Endosc Surg, 2021, 14(4): 707-716.
|
6. |
任贺, 王革, 顾国, 等. 降钙素原对肠外瘘确定性手术后腹腔感染的预测价值. 中华胃肠外科杂志, 2017, 20(5): 524-529.
|
7. |
Kanda M. Preoperative predictors of postoperative complications after gastric cancer resection. Surg Today, 2020, 50(1): 3-11.
|
8. |
Makuuchi R, Irino T, Tanizawa Y, et al. Esophagojejunal anastomotic leakage following gastrectomy for gastric cancer. Surg Today, 2019, 49(3): 187-196.
|
9. |
Roh CK, Choi S, Seo WJ, et al. Incidence and treatment outcomes of leakage after gastrectomy for gastric cancer: Experience of 14 075 patients from a large volume centre. Eur J Surg Oncol, 2021, 47(9): 2304-2312.
|
10. |
Baiocchi GL, Giacopuzzi S, Marrelli D, et al. International consensus on a complications list after gastrectomy for cancer. Gastric Cancer, 2019, 22(1): 172-189.
|
11. |
Xing J, Liu M, Qi X, et al. Risk factors for esophagojejunal anastomotic leakage after curative total gastrectomy combined with D2 lymph node dissection for gastric cancer. J Int Med Res, 2021, 49(3): 3000605211000883. doi: 10.1177/03000605211000883.
|
12. |
Goense L, Stassen PMC, Wessels FJ, et al. Diagnostic performance of a CT-based scoring system for diagnosis of anastomotic leakage after esophagectomy: comparison with subjective CT assessment. Eur Radiol, 2017, 27(10): 4426-4434.
|
13. |
Miller DL, Helms GA, Mayfield WR. Evaluation of esophageal anastomotic integrity with serial pleural amylase levels. Ann Thorac Surg, 2018, 105(1): 200-206.
|
14. |
Jiang B, Ho VP, Ginsberg J, et al. Decision analysis supports the use of drain amylase-based enhanced recovery method after esophagectomy. Dis Esophagus, 2018, 31(10). doi: 10.1093/dote/doy013.
|
15. |
张鹏, 陶凯雄. 胃癌术后吻合口漏的预防与处理. 中国普外基础与临床杂志, 2021, 28(6): 717-720.
|
16. |
Bonenkamp JJ, Songun I, Hermans J, et al. Randomised comparison of morbidity after D1 and D2 dissection for gastric cancer in 996 Dutch patients. Lancet, 1995, 345(8952): 745-748.
|
17. |
Migita K, Takayama T, Matsumoto S, et al. Risk factors for esophagojejunal anastomotic leakage after elective gastrectomy for gastric cancer. J Gastrointest Surg, 2012, 16(9): 1659-1665.
|
18. |
Trapani R, Rausei S, Reddavid R, et al. Risk factors for esophago-jejunal anastomosis leakage after total gastrectomy for cancer. A multicenter retrospective study of the Italian research group for gastric cancer. Eur J Surg Oncol, 2020, 46(12): 2243-2247.
|
19. |
Bracale U, Peltrini R, De Luca M, et al. Predictive factors for anastomotic leakage after laparoscopic and open total gastrectomy: A systematic review. J Clin Med, 2022, 11(17): 5022. doi: 10.3390/jcm11175022.
|
20. |
Budisin N, Budisin E, Golubovic A. Early complications following total gastrectomy for gastric cancer. J Surg Oncol, 2001, 77(1): 35-41.
|
21. |
Maejima K, Taniai N, Yoshida H. Risk factors for esophagojejunal anastomotic leakage in gastric cancer patients after total gastrectomy. J Nippon Med Sch, 2023, 90(1): 64-68.
|
22. |
刘哲魁, 韩晓帆, 王泽正, 等. 胃癌根治性切除术后感染性并发症的危险因素分析及预测模型的建立: 一项回顾性队列研究. 中国普外基础与临床杂志, 2024, 31(2): 218-224.
|
23. |
Schietroma M, Romano L, Schiavi D, et al. Systemic inflammation response index (SIRI) as predictor of anastomotic leakage after total gastrectomy for gastric cancer. Surg Oncol, 2022, 43: 101791. doi: 10.1016/j.suronc.2022.101791.
|
24. |
Kushiyama S, Sakurai K, Kubo N, et al. The preoperative geriatric nutritional risk index predicts postoperative complications in elderly patients with gastric cancer undergoing gastrectomy. In Vivo, 2018, 32(6): 1667-1672.
|
25. |
Yang CK, Huang KT, Qin W, et al. Prognostic value of geriatric nutritional risk index and prognostic nutritional index in hepatocellular carcinoma. Clin Nutr ESPEN, 2024, 59: 355-364.
|
26. |
Di Sibio A, Romano L, Giuliani A, et al. Nerve root metastasis of gastric adenocarcinoma: A case report and review of the literature. Int J Surg Case Rep, 2019, 61: 9-13.
|
27. |
Schietroma M, Pessia B, Mattei A, et al. Temperature-neutrophils-multiple organ failure grading for complicated intra-abdominal infections. Surg Infect (Larchmt), 2020, 21(1): 69-74.
|
28. |
Schietroma M, Romano L, Pessia B, et al. TNM: a simple classification system for complicated intra-abdominal sepsis after acute appendicitis. Minerva Chir, 2020, 75(6): 442-448.
|
29. |
Romano L, Giuliani A, Pessia B, et al. The early prediction of mortality in acute cholecystitis: Temperature, Neutrophils and Multiple organ failure (TNM) score. Eur Rev Med Pharmacol Sci, 2021, 25(20): 6339-6348.
|
30. |
Kim MR, Kim AS, Choi HI, et al. Inflammatory markers for predicting overall survival in gastric cancer patients: A systematic review and meta-analysis. PLoS One, 2020, 15(7): e0236445. doi: 10.1371/journal.pone.0236445.
|
31. |
Tang X, Jin T, Zhang X, et al. Clinical value of prognostic nutritional index combined with C-reactive protein and albumin in early prediction of anastomotic leakage after radical gastric cancer surgery. Am J Transl Res, 2024, 16(7): 3081-3089.
|
32. |
Liu X, Lei S, Wei Q, et al. Machine learning-based correlation study between perioperative immunonutritional index and postoperative anastomotic leakage in patients with gastric cancer. Int J Med Sci, 2022, 19(7): 1173-1183.
|
33. |
Geng Y, Zhu D, Wu C, et al. A novel systemic inflammation response index (SIRI) for predicting postoperative survival of patients with esophageal squamous cell carcinoma. Int Immunopharmacol, 2018, 65: 503-510.
|
34. |
Li S, Lan X, Gao H, et al. Systemic Inflammation Response Index (SIRI), cancer stem cells and survival of localised gastric adenocarcinoma after curative resection. J Cancer Res Clin Oncol, 2017, 143(12): 2455-2468.
|
35. |
Yang X, Wu C. Systemic immune inflammation index and gastric cancer prognosis: A systematic review and meta-analysis. Exp Ther Med, 2024, 27(3): 122. doi: 10.3892/etm.2024.12410.
|
36. |
Zhang J, Zhang L, Duan S, et al. Single and combined use of the platelet-lymphocyte ratio, neutrophil-lymphocyte ratio, and systemic immune-inflammation index in gastric cancer diagnosis. Front Oncol, 2023, 13: 1143154. doi: 10.3389/fonc.2023.1143154.
|
37. |
Zhao B, Zhang J, Zhang J, et al. The impact of preoperative underweight status on postoperative complication and survival outcome of gastric cancer patients: A systematic review and meta-analysis. Nutr Cancer, 2018, 70(8): 1254-1263.
|
38. |
Kim YN, Choi YY, An JY, et al. Comparison of postoperative nutritional status after distal gastrectomy for gastric cancer using three reconstructive methods: a multicenter study of over 1 300 patients. J Gastrointest Surg, 2020, 24(7): 1482-1488.
|
39. |
Xiao Q, Li X, Duan B, et al. Clinical significance of controlling nutritional status score (CONUT) in evaluating outcome of postoperative patients with gastric cancer. Sci Rep, 2022, 12(1): 93. doi: 10.1038/s41598-021-04128-4.
|
40. |
Oshi M, Kunisaki C, Miyamoto H, et al. Risk factors for anastomotic leakage of esophagojejunostomy after laparoscopy-assisted total gastrectomy for gastric cancer. Dig Surg, 2018, 35(1): 28-34.
|
41. |
宋应周, 吴新军. 预后营养指数联合中性粒细胞与淋巴细胞比值早期预测胃癌根治术后吻合口漏的临床价值. 中国普外基础与临床杂志, 2021, 28(7): 915-919.
|
42. |
Takagi K, Domagala P, Polak WG, et al. Prognostic significance of the controlling nutritional status (CONUT) score in patients undergoing gastrectomy for gastric cancer: a systematic review and meta-analysis. BMC Surg, 2019, 19(1): 129. doi: 10.1186/s12893-019-0593-6.
|
43. |
Cederholm T, Bosaeus I, Barazzoni R, et al. Diagnostic criteria for malnutrition—An ESPEN consensus statement. Clin Nutr, 2015, 34(3): 335-340.
|
44. |
Sugawara K, Yamashita H, Urabe M, et al. Poor nutritional status and sarcopenia influences survival outcomes in gastric carcinoma patients undergoing radical surgery. Eur J Surg Oncol, 2020, 46(10 Pt A): 1963-1970.
|
45. |
Liao Y, Lv L, Lin F, et al. Predictive value and model construction of preoperative nutritional indexes for postoperative leakage in gastric cancer. Nutrition, 2025, 131: 112630. doi: 10.1016/j.nut.2024.112630.
|
46. |
Xiang S, Yang YK, Wang TY, et al. Development and validation of a nomogram to predict anastomotic leakage in colorectal cancer based on CT body composition. Front Nutr, 2022, 9: 974903. doi: 10.3389/fnut.2022.974903.
|
47. |
Ri M, Narita T, Urabe M, et al. Effects of the preoperative use and dosage of steroids on postoperative complications of gastric cancer surgery. Surg Today, 2023, 53(10): 1173-1180.
|
48. |
Busti AJ, Hooper JS, Amaya CJ, et al. Effects of perioperative antiinflammatory and immunomodulating therapy on surgical wound healing. Pharmacotherapy, 2005, 25(11): 1566-1591.
|
49. |
Kim SJ, Jeon CH, Lee HH, et al. Impact of postoperative NSAIDs (IV-PCA) use on short-term outcomes after laparoscopic gastrectomy for the patients of gastric cancer. Surg Endosc, 2023, 37(2): 1123-1131.
|
50. |
Tu RH, Lin JX, Zheng CH, et al. Development of a nomogram for predicting the risk of anastomotic leakage after a gastrectomy for gastric cancer. Eur J Surg Oncol, 2017, 43(2): 485-492.
|
51. |
Xu B, Zhang F, Peng Y, et al. Predicting esophagojejunal anastomotic leakage in gastric cancer patients after total gastrectomy: Development and assessment of a new predictive nomogram. Asian J Surg, 2024, 47(1): 528-530.
|
52. |
Shi J, Wu Z, Wu X, et al. Early diagnosis of anastomotic leakage after gastric cancer surgery via analysis of inflammatory factors in abdominal drainage. Ann Surg Oncol, 2022, 29(2): 1230-1241.
|
53. |
Shao S, Liu L, Zhao Y, et al. Application of machine learning for predicting anastomotic leakage in patients with gastric adenocarcinoma who received total or proximal gastrectomy. J Pers Med, 2021, 11(8): 748. doi: 10.3390/jpm11080748.
|
54. |
Li Y, Su Y, Shao S, et al. Machine learning-based prediction of duodenal stump leakage following laparoscopic gastrectomy for gastric cancer. Surgery, 2025, 180: 108999. doi: 10.1016/j.surg.2024.108999.
|
55. |
Çelik S, Sohail A, Ashraf S, et al. Application of machine learning techniques to analyze anastomosis integrity after total gastrectomy for prediction of clinical leakage. Health Technol, 2019, 9(5): 7. doi: 10.1007/s12553-019-00365-w.
|
56. |
Fukuyo R, Tokunaga M, Umebayashi Y, et al. Deep learning-based diagnostic model for predicting complications after gastrectomy. Asian J Endosc Surg, 2023, 16(2): 210-217.
|
57. |
Meurer WJ, Tolles J. Logistic regression diagnostics: Understanding how well a model predicts outcomes. JAMA, 2017, 317(10): 1068-1069.
|
58. |
Dinh A, Miertschin S, Young A, et al. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning. BMC Med Inform Decis Mak, 2019, 19(1): 211. doi: 10.1186/s12911-019-0918-5.
|
59. |
Huang H, Gao Y, Zhang H, et al. Weighted Lasso estimates for sparse logistic regression: non-asymptotic properties with measurement errors. Acta Math Sci, 2021, 41(1): 207-230.
|
60. |
Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet Oncol, 2019, 20(5): e262-e273. doi: 10.1016/S1470-2045(19)30149-4.
|
61. |
Zaccaria GM, Ferrero S, Hoster E, et al. A clinical prognostic model based on machine learning from the Fondazione Italiana Linfomi (FIL) MCL0208 phase Ⅲ trial. Cancers (Basel), 2021, 14(1): 188. doi: 10.3390/cancers14010188.
|
62. |
Liu X, Lu J, Zhang G, et al. A machine learning approach yields a multiparameter prognostic marker in liver cancer. Cancer Immunol Res, 2021, 9(3): 337-347.
|
63. |
Kourou K, Exarchos TP, Exarchos KP, et al. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J, 2014, 13: 8-17.
|
64. |
Chen Y, Wang B, Zhao Y, et al. Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer. Nat Commun, 2024, 15(1): 1657. doi: 10.1038/s41467-024-46043-y.
|
65. |
Dong TS, Kalani A, Aby ES, et al. Machine learning-based development and validation of a scoring system for screening high-risk esophageal varices. Clin Gastroenterol Hepatol, 2019, 17(9): 1894-1901.
|
66. |
Testi D, Cappello A, Chiari L, et al. Comparison of logistic and Bayesian classifiers for evaluating the risk of femoral neck fracture in osteoporotic patients. Med Biol Eng Comput, 2001, 39(6): 633-637.
|
67. |
Fritz BA, Cui Z, Zhang M, et al. Deep-learning model for predicting 30-day postoperative mortality. Br J Anaesth, 2019, 123(5): 688-695.
|
68. |
Christodoulou E, Ma J, Collins GS, et al. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol, 2019, 110: 12-22.
|
69. |
van Kooten RT, Bahadoer RR, Ter Buurkes de Vries B, et al. Conventional regression analysis and machine learning in prediction of anastomotic leakage and pulmonary complications after esophagogastric cancer surgery. J Surg Oncol, 2022, 126(3): 490-501.
|
70. |
Busweiler LA, Wijnhoven BP, van Berge Henegouwen MI, et al. Early outcomes from the Dutch Upper Gastrointestinal Cancer Audit. Br J Surg, 2016, 103(13): 1855-1863.
|