1. |
中华医学会内分泌学分会. 肥胖患者的长期体重管理及药物临床应用指南(2024版). 中华内分泌代谢杂志, 2024, 40(7): 545-564.
|
2. |
Shah N, Sanyal AJ. A pragmatic management approach for metabolic dysfunction-associated steatosis and steatohepatitis. Am J Gastroenterol, 2025, 120(1): 75-82.
|
3. |
Ndumele CE, Neeland IJ, Tuttle KR, et al. A synopsis of the evidence for the science and clinical management of cardiovascular-kidney-metabolic (CKM) syndrome: A scientific statement from the American Heart Association. Circulation, 2023, 148(20): 1636-1664.
|
4. |
Chen J, Cai M, Zhan C. Neuronal regulation of feeding and energy metabolism: A focus on the hypothalamus and brainstem. Neurosci Bull, 2025, 41(4): 665-675.
|
5. |
Qiu J, Bosch MA, Stincic TL, et al. CRISPR/SaCas9 mutagenesis of stromal interaction molecule 1 in proopiomelanocortin neurons increases glutamatergic excitability and protects against diet-induced obesity. Mol Metab, 2022, 66: 101645. doi: 10.1016/j.molmet.2022.101645.
|
6. |
Tan HL, Yin L, Tan Y, et al. Leptin-activated hypothalamic BNC2 neurons acutely suppress food intake. Nature, 2024, 636(8041): 198-205.
|
7. |
Roy P, Kant R, Kaur A, et al. Leptin resistance and cardiometabolic disorders: Bridging molecular pathways, genetic variants, and therapeutic innovation. Curr Cardiol Rev, 2025, 21(5): E1573403X356019. doi: 10.2174/011573403X356019250118170444.
|
8. |
Skoracka K, Hryhorowicz S, Schulz P, et al. The role of leptin and ghrelin in the regulation of appetite in obesity. Peptides, 2025, 186: 171367. doi: 10.1016/j.peptides.2025.171367.
|
9. |
Kamakura R, Raza GS, Sodum N, et al. Colonic delivery of nutrients for sustained and prolonged release of gut peptides: A novel strategy for appetite management. Mol Nutr Food Res, 2022, 66(19): e2200192. doi: 10.1002/mnfr.202200192.
|
10. |
McKnight AD, Alhadeff AL. Nutrient detection pathways for food reinforcement and satiation. Curr Opin Neurobiol, 2025, 92: 103040. doi: 10.1016/j.conb.2025.103040.
|
11. |
Zhang Z, Cui Y, Su V, et al. A PPARγ/long noncoding RNA axis regulates adipose thermoneutral remodeling in mice. J Clin Invest, 2023, 133(21): e170072. doi: 10.1172/JCI170072.
|
12. |
Liu X, Zhang Z, Song Y, et al. An update on brown adipose tissue and obesity intervention: Function, regulation and therapeutic implications. Front Endocrinol (Lausanne), 2023, 13: 1065263. doi: 10.3389/fendo.2022.1065263.
|
13. |
Takeda Y, Harada Y, Yoshikawa T, et al. Mitochondrial energy metabolism in the regulation of thermogenic brown fats and human metabolic diseases. Int J Mol Sci, 2023, 24(2): 1352. doi: 10.3390/ijms24021352.
|
14. |
Zhao L, Li W, Zhang P, et al. Liraglutide induced browning of visceral white adipose through regulation of miRNAs in high-fat-diet-induced obese mice. Endocrine, 2024, 85(1): 222-232.
|
15. |
Hamjane N, Mechita MB, Nourouti NG, et al. Gut microbiota dysbiosis-associated obesity and its involvement in cardiovascular diseases and type 2 diabetes. A systematic review. Microvasc Res, 2024, 151: 104601. doi: 10.1016/j.mvr.2023.104601.
|
16. |
Yao Q, Yu Z, Meng Q, et al. The role of small intestinal bacterial overgrowth in obesity and its related diseases. Biochem Pharmacol, 2023, 212: 115546. doi: 10.1016/j.bcp.2023.115546.
|
17. |
Yarahmadi A, Afkhami H, Javadi A, et al. Understanding the complex function of gut microbiota: Its impact on the pathogenesis of obesity and beyond: A comprehensive review. Diabetol Metab Syndr, 2024, 16(1): 308. doi: 10.1186/s13098-024-01561-z.
|
18. |
Zhao Q, Han B, Xu Q, et al. Proteome and genome integration analysis of obesity. Chin Med J (Engl), 2023, 136(8): 910-921.
|
19. |
Berseneva A, Kovalenko E, Vergasova E, et al. Association of common genetic variants with body mass index in Russian population. Eur J Clin Nutr, 2023, 77(5): 574-578.
|
20. |
Ponce-Gonzalez JG, Martínez-Ávila Á, Velázquez-Díaz D, et al. Impact of the FTO gene variation on appetite and fat oxidation in young adults. Nutrients, 2023, 15(9): 2037. doi: 10.3390/nu15092037.
|
21. |
Li RL, Kang S. Rewriting cellular fate: Epigenetic interventions in obesity and cellular programming. Mol Med, 2024, 30(1): 169. doi: 10.1186/s10020-024-00944-2.
|
22. |
Vergnes L, Wiese CB, Zore T, et al. Gene regulation and mitochondrial activity during white and brown adipogenesis are modulated by KDM5 histone demethylase. J Endocr Soc, 2024, 8(4): bvae029. doi: 10.1210/jendso/bvae029.
|
23. |
Sjöström L. Analysis of the XENDOS study (Xenical in the prevention of diabetes in obese subjects). Endocr Pract, 2006, 12 Suppl 1: 31-33.
|
24. |
Shi YF, Pan CY, Hill J, et al. Orlistat in the treatment of overweight or obese Chinese patients with newly diagnosed type 2 diabetes. Diabet Med, 2005, 22(12): 1737-1743.
|
25. |
Gudzune KA, Kushner RF. Medications for obesity: A review. JAMA, 2024, 332(7): 571-584.
|
26. |
Uehira Y, Ueno H, Miyamoto J, et al. Impact of the lipase inhibitor orlistat on the human gut microbiota. Obes Res Clin Pract, 2023, 17(5): 411-420.
|
27. |
Grunvald E, Shah R, Hernaez R, et al. AGA clinical practice guideline on pharmacological interventions for adults with obesity. Gastroenterology, 2022, 163(5): 1198-1225.
|
28. |
Baccari MC, Vannucchi MG, Idrizaj E. The possible involvement of glucagon-like peptide-2 in the regulation of food intake through the gut-brain axis. Nutrients, 2024, 16(18): 3069. doi: 10.3390/nu16183069.
|
29. |
Moiz A, Filion KB, Tsoukas MA, et al. Mechanisms of GLP-1 receptor agonist-induced weight loss: A review of central and peripheral pathways in appetite and energy regulation. Am J Med, 2025, 138(6): 934-940.
|
30. |
Fathy MA, Alsemeh AE, Habib MA, et al. Liraglutide ameliorates diabetic-induced testicular dysfunction in male rats: Role of GLP-1/Kiss1/GnRH and TGF-β/Smad signaling pathways. Front Pharmacol, 2023, 14: 1224985. doi: 10.3389/fphar.2023.1224985.
|
31. |
Webster AN, Becker JJ, Li C, et al. Molecular connectomics reveals a glucagon-like peptide 1-sensitive neural circuit for satiety. Nat Metab, 2024, 6(12): 2354-2373.
|
32. |
Mashayekhi M, Nian H, Mayfield D, et al. Weight loss-independent effect of liraglutide on insulin sensitivity in individuals with obesity and prediabetes. Diabetes, 2024, 73(1): 38-50.
|
33. |
Pi-Sunyer X, Astrup A, Fujioka K, et al. A randomized, controlled trial of 3. 0 mg of liraglutide in weight management. N Engl J Med, 2015, 373(1): 11-22.
|
34. |
Davies MJ, Bergenstal R, Bode B, et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: The SCALE diabetes randomized clinical trial. JAMA, 2015, 314(7): 687-699.
|
35. |
Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med, 2016, 375(4): 311-322.
|
36. |
Du M, Yue J, Qi Y, et al. Effects of liraglutide on abdominal fat distribution and glucose metabolism in Chinese subjects with obesity. Diabetol Metab Syndr, 2024, 16(1): 307. doi: 10.1186/s13098-024-01540-4.
|
37. |
Mok J, Adeleke MO, Brown A, et al. Safety and efficacy of liraglutide, 3. 0 mg, once daily vs placebo in patients with poor weight loss following metabolic surgery: The BARI-OPTIMISE randomized clinical trial. JAMA Surg, 2023, 158(10): 1003-1011.
|
38. |
Konwar M, Bose D, Jaiswal SK, et al. Efficacy and safety of liraglutide 3. 0 mg in patients with overweight and obese with or without diabetes: A systematic review and meta-analysis. Int J Clin Pract, 2022, 2022: 1201977. doi: 10.1155/2022/1201977.
|
39. |
Singh I, Wang L, Xia B, et al. Activation of arcuate nucleus glucagon-like peptide-1 receptor-expressing neurons suppresses food intake. Cell Biosci, 2022, 12(1): 178. doi: 10.1186/s13578-022-00914-3.
|
40. |
Abu-Freha N, Yitzhak A, Shirin H, et al. Glucagon-like peptide-1 receptor agonists significantly affect the quality of bowel preparation for colonoscopy. Endoscopy, 2025, 57(2): 126-133.
|
41. |
Chen K, Chen L, Shan Z, et al. Beinaglutide for weight management in Chinese individuals with overweight or obesity: A phase 3 randomized controlled clinical study. Diabetes Obes Metab, 2024, 26(2): 690-698.
|
42. |
Yang XD, Yang YY. Clinical pharmacokinetics of semaglutide: A systematic review. Drug Des Devel Ther, 2024, 18: 2555-2570.
|
43. |
Davies M, Færch L, Jeppesen OK, et al. Semaglutide 2. 4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): A randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet, 2021, 397(10278): 971-984.
|
44. |
Mu Y, Bao X, Eliaschewitz FG, et al. Efficacy and safety of once weekly semaglutide 2. 4 mg for weight management in a predominantly east Asian population with overweight or obesity (STEP 7): A double-blind, multicentre, randomised controlled trial. Lancet Diabetes Endocrinol, 2024, 12(3): 184-195.
|
45. |
Feier CVI, Vonica RC, Faur AM, et al. Assessment of thyroid carcinogenic risk and safety profile of GLP1-RA semaglutide (ozempic) therapy for diabetes mellitus and obesity: A systematic literature review. Int J Mol Sci, 2024, 25(8): 4346. doi: 10.3390/ijms25084346.
|
46. |
Hu X, Wang Y, Yang K, et al. Effect of semaglutide with obesity or overweight individuals without diabetes: An Umbrella review of systematic reviews. Endocrine, 2025, 88(2): 387-397.
|
47. |
Boer GA, Hay DL, Tups A. Obesity pharmacotherapy: Incretin action in the central nervous system. Trends Pharmacol Sci, 2023, 44(1): 50-63.
|
48. |
El K, Douros JD, Willard FS, et al. The incretin co-agonist tirzepatide requires GIPR for hormone secretion from human islets. Nat Metab, 2023, 5(6): 945-954.
|
49. |
Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide once weekly for the treatment of obesity. N Engl J Med, 2022, 387(3): 205-216.
|
50. |
Garvey WT, Frias JP, Jastreboff AM, et al. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): A double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet, 2023, 402(10402): 613-626.
|
51. |
Zhao L, Cheng Z, Lu Y, et al. Tirzepatide for weight reduction in Chinese adults with obesity: The SURMOUNT-CN randomized clinical trial. JAMA, 2024, 332(7): 551-560.
|
52. |
中国民族卫生协会, 中国健康管理协会健康体检分会. 胰高糖素样肽-1受体激动剂类药物结合生活方式干预减重专家共识(2024版). 中华糖尿病杂志, 2024, 16(9): 945-958.
|
53. |
Bailey CJ, Flatt PR, Conlon JM. Multifunctional incretin peptides in therapies for type 2 diabetes, obesity and associated co-morbidities. Peptides, 2025, 187: 171380. doi: 10.1016/j.peptides.2025.171380.
|
54. |
Ji L, Jiang H, Bi Y, et al. Once-weekly mazdutide in Chinese adults with obesity or overweight. N Engl J Med, 2025, 392(22): 2215-2225.
|
55. |
Coskun T, Urva S, Roell WC, et al. LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weight loss: From discovery to clinical proof of concept. Cell Metab, 2022, 34(9): 1234-1247.
|
56. |
Jastreboff AM, Kaplan LM, Frías JP, et al. Triple-hormone-receptor agonist retatrutide for obesity—A phase 2 trial. N Engl J Med, 2023, 389(6): 514-526.
|
57. |
Sanyal AJ, Kaplan LM, Frias JP, et al. Triple hormone receptor agonist retatrutide for metabolic dysfunction-associated steatotic liver disease: A randomized phase 2A trial. Nat Med, 2024, 30(7): 2037-2048.
|
58. |
Knop FK, Aroda VR, do Vale RD, et al. Oral semaglutide 50 mg taken once per day in adults with overweight or obesity (OASIS 1): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2023, 402(10403): 705-719.
|
59. |
Singh AK, Singh R, Singh A, et al. Efficacy and safety of oral semaglutide in type 2 diabetes: A systematic review of real-world evidence. Diabetes Metab Syndr, 2024, 18(5): 103024. doi: 10.1016/j.dsx.2024.103024.
|
60. |
Wharton S, Blevins T, Connery L, et al. Daily oral GLP-1 receptor agonist orforglipron for adults with obesity. N Engl J Med, 2023, 389(10): 877-888.
|
61. |
Pratt E. Orforglipron (LY3502970), a novel, oral non-peptide glucagon-like peptide-1 receptor agonist: A phase 1b, multicentre, blinded, placebo-controlled, randomized, multiple-ascending-dose study in people with type 2 diabetes. Diabetes Obes Metab, 2024, 26(3): 1137. doi: 10.1111/dom.15372.
|
62. |
Aronne LJ, Wadden TA, Peterson C, et al. Evaluation of phentermine and topiramate versus phentermine/topiramate extended-release in obese adults. Obesity (Silver Spring), 2013, 21(11): 2163-2171.
|
63. |
Gadde KM, Allison DB, Ryan DH, et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): A randomised, placebo-controlled, phase 3 trial. Lancet, 2011, 377(9774): 1341-1352.
|
64. |
Shi Q, Wang Y, Hao Q, et al. Pharmacotherapy for adults with overweight and obesity: A systematic review and network meta-analysis of randomised controlled trials. Lancet, 2024, 403(10434): e21-e31. doi: 10.1016/S0140-6736(24)00351-9.
|
65. |
Vivot K, Meszaros G, Pangou E, et al. CaMK1D signalling in AgRP neurons promotes ghrelin-mediated food intake. Nat Metab, 2023, 5(6): 1045-1058.
|
66. |
Allas S, Caixàs A, Poitou C, et al. AZP-531, an unacylated ghrelin analog, improves food-related behavior in patients with Prader-Willi syndrome: A randomized placebo-controlled trial. PLoS One, 2018, 13(1): e0190849. doi: 10.1371/journal.pone.0190849.
|
67. |
Zorrilla EP, Iwasaki S, Moss JA, et al. Vaccination against weight gain. Proc Natl Acad Sci USA, 2006, 103(35): 13226-13231.
|
68. |
Axelrod CL, King WT, Davuluri G, et al. BAM15-mediated mitochondrial uncoupling protects against obesity and improves glycemic control. EMBO Mol Med, 2020, 12(7): e12088. doi: 10.15252/emmm.202012088.
|
69. |
Mullican SE, Lin-Schmidt X, Chin CN, et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med, 2017, 23(10): 1150-1157.
|
70. |
Benichou O, Coskun T, Gonciarz MD, et al. Discovery, development, and clinical proof of mechanism of LY3463251, a long-acting GDF15 receptor agonist. Cell Metab, 2023, 35(2): 274-286.
|
71. |
Liu J, Lu W, Wu H, et al. Rational design of dual-agonist peptides targeting GLP-1 and NPY2 receptors for regulating glucose homeostasis and body weight with minimal nausea and emesis. Eur J Med Chem, 2025, 287: 117320. doi: 10.1016/j.ejmech.2025.117320.
|
72. |
Clément K, Biebermann H, Farooqi IS, et al. MC4R agonism promotes durable weight loss in patients with leptin receptor deficiency. Nat Med, 2018, 24(5): 551-555.
|
73. |
Anazco D, Acosta A. Precision medicine for obesity: Current evidence and insights for personalization of obesity pharmacotherapy. Int J Obes (Lond), 2025, 49(3): 452-463.
|
74. |
Chen F, Jing K, Zhang Z, et al. A review on drug repurposing applicable to obesity. Obes Rev, 2025, 26(2): e13848. doi: 10.1111/obr.13848.
|
75. |
Yang Y, He L, Liu P, et al. Impact of a dual glucose-dependent insulinotropic peptide/glucagon-like peptide-1 receptor agonist tirzepatide on heart rate among patients with type 2 diabetes: A systematic review and pairwise and network meta-analysis. Diabetes Obes Metab, 2024, 26(2): 548-556.
|
76. |
Berg S, Stickle H, Rose SJ, et al. Discontinuing glucagon-like peptide-1 receptor agonists and body habitus: A systematic review and meta-analysis. Obes Rev, 2025, 26(8): e13929. doi: 10.1111/obr.13929.
|
77. |
Barrea L, Salzano C, Pugliese G, et al. The challenge of weight loss maintenance in obesity: A review of the evidence on the best strategies available. Int J Food Sci Nutr, 2022, 73(8): 1030-1046.
|
78. |
Jensterle M, Ferjan S, Janez A. The maintenance of long-term weight loss after semaglutide withdrawal in obese women with PCOS treated with metformin: A 2-year observational study. Front Endocrinol (Lausanne), 2024, 15: 1366940. doi: 10.3389/fendo.2024.1366940.
|
79. |
Tillman EM, Mertami S. Precision medicine to identify, prevent, and treat pediatric obesity. Pharmacotherapy, 2024, 44(12): 939-947.
|
80. |
Horváth L, Mráz M, Jude EB, et al. Pharmacotherapy as an augmentation to bariatric surgery for obesity. Drugs, 2024, 84(8): 933-952.
|