Copyright © the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
1. | Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid, 2016, 26(1): 1-133. |
2. | Ringel MD, Sosa JA, Baloch Z, et al. 2025 American Thyroid Association management guidelines for adult patients with differentiated thyroid cancer. Thyroid, 2025, 35(8): 841-985. |
3. | Cheng SP, Lee JJ, Lin JL, et al. Characterization of thyroid nodules using the proposed thyroid imaging reporting and data system (TI-RADS). Head Neck, 2013, 35(4): 541-547. |
4. | Lin KL, Wang OC, Zhang XH, et al. The BRAF mutation is predictive of aggressive clinicopathological characteristics in papillary thyroid microcarcinoma. Ann Surg Oncol, 2010, 17(12): 3294-3300. |
5. | Zheng X, Wei S, Han Y, et al. Papillary microcarcinoma of the thyroid: clinical characteristics and BRAF(V600E) mutational status of 977 cases. Ann Surg Oncol, 2013, 20(7): 2266-2273. |
6. | Liu S, Gao A, Zhang B, et al. Assessment of molecular testing in fine-needle aspiration biopsy samples: an experience in a Chinese population. Exp Mol Pathol, 2014, 97(2): 292-297. |
7. | Wang N, Zhai H, Lu Y. Is fluorine-18 fluorodeoxyglucose positron emission tomography useful for the thyroid nodules with indeterminate fine needle aspiration biopsy? A meta-analysis of the literature. J Otolaryngol Head Neck Surg, 2013, 42(1): 38. |
8. | Kung AW, Chau MT, Lao TT, et al. The effect of pregnancy on thyroid nodule formation. J Clin Endocrinol Metab, 2002, 87(3): 1010-1014. |
9. | Lin JD, Chao TC, Huang MJ, et al. Use of radioactive iodine for thyroid remnant ablation in well-differentiated thyroid carcinoma to replace thyroid reoperation. Am J Clin Oncol, 1998, 21(1): 77-81. |
10. | Lang BH, Wong KP, Wan KY, et al. Impact of routine unilateral central neck dissection on preablative and postablative stimulated thyroglobulin levels after total thyroidectomy in papillary thyroid carcinoma. Ann Surg Oncol, 2012, 19(1): 60-67. |
11. | Lang BH, Ng SH, Lau LL, et al. A systematic review and meta-analysis of prophylactic central neck dissection on short-term locoregional recurrence in papillary thyroid carcinoma after total thyroidectomy. Thyroid, 2013, 23(9): 1087-1098. |
12. | Cheng SP, Lee JJ, Liu TP, et al. Preoperative ultrasonography assessment of vocal cord movement during thyroid and parathyroid surgery. World J Surg, 2012, 36(10): 2509-2515. |
13. | Chan WF, Lang BH, Lo CY. The role of intraoperative neuromonitoring of recurrent laryngeal nerve during thyroidectomy: a comparative study on 1000 nerves at risk. Surgery, 2006, 140(6): 866-872. |
14. | Huang CC, Hsueh C, Liu FH, et al. Diagnostic and therapeutic strategies for minimally and widely invasive follicular thyroid carcinomas. Surg Oncol, 2011, 20(1): 1-6. |
15. | Lo CY, Chan WF, Lam KY, et al. Follicular thyroid carcinoma: the role of histology and staging systems in predicting survival. Ann Surg, 2005, 242(5): 708-715. |
16. | Lang BH, Chow SM, Lo CY, et al. Staging systems for papillary thyroid carcinoma: a study of 2 tertiary referral centers. Ann Surg, 2007, 246(1): 114-121. |
17. | Lang BH, Lo CY, Chan WF, et al. Staging systems for papillary thyroid carcinoma: a review and comparison. Ann Surg, 2007, 245(3): 366-378. |
18. | Lang BH, Lo CY, Chan WF, et al. Staging systems for follicular thyroid carcinoma: application to 171 consecutive patients treated in a tertiary referral centre. Endocr Relat Cancer, 2007, 14(1): 29-42. |
19. | Wong H, Wong KP, Yau T, et al. Is there a role for unstimulated thyroglobulin velocity in predicting recurrence in papillary thyroid carcinoma patients with detectable thyroglobulin after radioiodine ablation?. Ann Surg Oncol, 2012, 19(11): 3479-3485. |
20. | Lin JD, Huang MJ, Hsu BR, et al. Significance of postoperative serum thyroglobulin levels in patients with papillary and follicular thyroid carcinomas. J Surg Oncol, 2002, 80(1): 45-51. |
21. | Hu YH, Wang PW, Wang ST, et al. Influence of 131I diagnostic dose on subsequent ablation in patients with differentiated thyroid carcinoma: discrepancy between the presence of visually apparent stunning and the impairment of successful ablation. Nucl Med Commun, 2004, 25(8): 793-797. |
22. | Chow SM, Yau S, Kwan CK, et al. Local and regional control in patients with papillary thyroid carcinoma: specific indications of external radiotherapy and radioactive iodine according to T and N categories in AJCC 6th edition. Endocr Relat Cancer, 2006, 13(4): 1159-1172. |
23. | Tu J, Wang S, Huo Z, et al. Recombinant human thyrotropin-aided versus thyroid hormone withdrawal-aided radioiodine treatment for differentiated thyroid cancer after total thyroidectomy: a meta-analysis. Radiother Oncol, 2014, 110(1): 25-30. |
24. | Fang Y, Ding Y, Guo Q, et al. Radioiodine therapy for patients with differentiated thyroid cancer after thyroidectomy: direct comparison and network meta-analyses. J Endocrinol Invest, 2013, 36(10): 896-902. |
25. | Ma C, Tang L, Fu H, et al. rhTSH-aided low-activity versus high-activity regimens of radioiodine in residual ablation for differentiated thyroid cancer: a meta-analysis. Nucl Med Commun, 2013, 34(12): 1150-1156. |
26. | Cheng W, Ma C, Fu H, et al. Low- or high-dose radioiodine remnant ablation for differentiated thyroid carcinoma: a meta-analysis. J Clin Endocrinol Metab, 2013, 98(4): 1353-1360. |
27. | Chen L, Luo Q, Shen Y, et al. Incremental value of 131I SPECT/CT in the management of patients with differentiated thyroid carcinoma. J Nucl Med, 2008, 49(12): 1952-1957. |
28. | Chen CH, Chen JF, Yang BY, et al. Bone mineral density in women receiving thyroxine suppressive therapy for differentiated thyroid carcinoma. J Formos Med Assoc, 2004, 103(6): 442-447. |
29. | Wang PW, Wang ST, Liu RT, et al. Levothyroxine suppression of thyroglobulin in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab, 1999, 84(12): 4549-4553. |
30. | Chao TC, Jeng LB, Lin JD, et al. Reoperative thyroid surgery. World J Surg, 1997, 21(6): 644-647. |
31. | 葛俊恒, 赵瑞利, 胡俊兰, 等. 侵及气道和消化道的晚期甲状腺癌的外科治疗. 中华耳鼻咽喉科杂志, 2004, 39(4): 237-240. |
32. | Ma C, Xie J, Liu W, et al. Recombinant human thyrotropin (rhTSH) aided radioiodine treatment for residual or metastatic differentiated thyroid cancer. Cochrane Database Syst Rev, 2010, 2010(11): CD008302. doi: 10.1002/14651858.CD008302.pub2. |
33. | Lin JD, Chao TC, Chou SC, et al. Papillary thyroid carcinomas with lung metastases. Thyroid, 2004, 14(12): 1091-1096. |
34. | Lang BH, Wong IO, Wong KP, et al. Risk of second primary malignancy in differentiated thyroid carcinoma treated with radioactive iodine therapy. Surgery, 2012, 151(6): 844-850. |
35. | Ma C, Kuang A, Xie J. Radioiodine therapy for differentiated thyroid carcinoma with thyroglobulin positive and radioactive iodine negative metastases. Cochrane Database Syst Rev, 2009, 2009(1): CD006988. doi: 10.1002/14651858.CD006988.pub2. |
36. | Huang SH, Wang PW, Huang YE, et al. Sequential follow-up of serum thyroglobulin and whole body scan in thyroid cancer patients without initial metastasis. Thyroid, 2006, 16(12): 1273-1278. |
37. | Ma C, Xie J, Kuang A. Is empiric 131I therapy justified for patients with positive thyroglobulin and negative 131I whole-body scanning results? J Nucl Med, 2005, 46(7): 1164-1170. |
38. | Chao M. Management of differentiated thyroid cancer with rising thyroglobulin and negative diagnostic radioiodine whole body scan. Clin Oncol (R Coll Radiol), 2010, 22(6): 438-447. |
39. | Liu B, Kuang A, Huang R, et al. Influence of vitamin C on salivary absorbed dose of 131I in thyroid cancer patients: a prospective, randomized, single-blind, controlled trial. J Nucl Med, 2010, 51(4): 618-623. |
40. | Xue YL, Qiu ZL, Song HJ, et al. Value of 131I SPECT/CT for the evaluation of differentiated thyroid cancer: a systematic review of the literature. Eur J Nucl Med Mol Imaging, 2013, 40(5): 768-778. |
41. | Zhang L, Liu J, Wang P, et al. Impact of gross strap muscle invasion on outcome of differentiated thyroid cancer: systematic review and meta-analysis. Front Oncol, 2020, 10: 1687. doi: 10.3389/fonc.2020.01687. |
42. | Xue S, Wang P, Liu J et al. Total thyroidectomy may be more reasonable as initial surgery in unilateral multifocal papillary thyroid microcarcinoma: a single-center experience. World J Surg Oncol, 2017, 15(1): 62. doi: 10.1186/s12957-017-1130-7. |
43. | Wang T, Kim HY, Wu CW et al. Analyzing cost-effectiveness of neural-monitoring in recurrent laryngeal nerve recovery course in thyroid surgery. Int J Surg, 2017, 48: 180-188. |
44. | Xue S, Zhang L, Wang P et al. Predictive factors of recurrence for multifocal papillary thyroid microcarcinoma with BRAFV600E mutation: a single center study of 1 207 Chinese patients. Front Endocrinol (Lausanne), 2019, 10: 407. doi: 10.3389/fendo.2019.00407. |
45. | Qichang W, Lin B, Gege Z et al. Diagnostic performance of 18F-FDG-PET/CT in DTC patients with thyroglobulin elevation and negative iodine scintigraphy: a meta-analysis. Eur J Endocrinol, 2019, 181(2): 93-102. |
46. | Wan B, Deng P, Dai W et al. Association between programmed cell death ligand 1 expression and thyroid cancer: a meta-analysis. Medicine (Baltimore), 2021, 100(14): e25315. doi: 10.1097/MD.0000000000025315. |
47. | Chow SM, Law SC, Chan JK et al. Papillary microcarcinoma of the thyroid-Prognostic significance of lymph node metastasis and multifocality. Cancer, 2003, 98(1): 31-40. |
48. | Chan WL, Choi HC, Lang B et al. Health-related quality of life in Asian differentiated thyroid cancer survivors. Cancer Control, 2021, 28: 10732748211029726. doi: 10.1177/10732748211029726. |
49. | Lang BH, Shek TW, Chan AO et al. Significance of size of persistent/recurrent central nodal disease on surgical morbidity and response to therapy in reoperative neck dissection for papillary thyroid carcinoma. Thyroid, 2017, 27(1): 67-73. |
50. | Zhao H, Cui L. Extent of surgery and the prognosis of unilateral papillary thyroid microcarcinoma. Front Endocrinol (Lausanne), 2021, 12: 655608. doi: 10.3389/fendo.2021.655608. |
51. | Wu Z, Xiao Y, Ming J et al. Reevaluation of criteria and establishment of models for total thyroidectomy in differentiated thyroid cancer. Front Oncol, 2021, 11: 691341. doi: 10.3389/fonc.2021.691341. |
52. | Yuan Q, Zheng L, Hou J et al. Visual identification and neuromonitoring vs. no sighting the external branch of the superior laryngeal nerve in thyroid surgery: a randomized clinical trial. Updates Surg, 2022, 74(2): 727-734. |
53. | Zhao H, Li H. Meta-analysis of ultrasound for cervical lymph nodes in papillary thyroid cancer: diagnosis of central and lateral compartment nodal metastases. Eur J Radiol, 2019, 112: 14-21. |
54. | Wang Y, Duan Y, Zhou M et al. The diagnostic value of thyroglobulin in fine-needle aspiration of metastatic lymph nodes in patients with papillary thyroid cancer and its influential factors. Surg Oncol, 2021 Dec: 39: 101666. |
55. | Sun D, Zheng X, He X et al. Prognostic value and dynamics of antithyroglobulin antibodies for differentiated thyroid carcinoma. Biomark Med, 2020, 14(18): 1683-1692. |
56. | Zheng X, Xu Z, Ji Q et al. A randomized, phase Ⅲ study of lenvatinib in chinese patients with radioiodine-refractory differentiated thyroid cancer. Clin Cancer Res, 2021, 27(20): 5502-5509. |
57. | Wu SY, Shen HY, Duh QY, et al. Routine intraoperative neuromonitoring of the recurrent laryngeal nerve to facilitate complete resection and ensure safety in thyroid cancer surgery. Am Surg, 2018, 84(12): 1882-1888. |
58. | Wu MH, Shen WT, Gosnell J et al. Prognostic significance of extranodal extension of regional lymph node metastasis in papillary thyroid cancer. Head Neck, 2015, 37(9): 1336-1343. |
59. | Wang SR, Li QL, Tian F et al. Diagnostic value of multiple diagnostic methods for lymph node metastases of papillary thyroid carcinoma: a systematic review and meta-analysis. Front Oncol, 2022, 12: 990603. doi: 10.3389/fonc.2022.990603. |
60. | Wang L, Yang D, Lv JY et al. Application of carbon nanoparticles in lymph node dissection and parathyroid protection during thyroid cancer surgeries: a systematic review and meta-analysis. Onco Targets Ther, 2017, 10: 1247-1260. |
61. | Zhang T, He L, Wang Z et al. The differences between multifocal and unifocal papillary thyroid carcinoma in unilateral lobe: a meta-analysis. Front Oncol, 2021, 11: 657237. doi: 10.3389/fonc.2021.657237. |
62. | Ni X, Xu S, Zhan W et al. A risk stratification model for metastatic lymph nodes of papillary thyroid cancer: a retrospective study based on sonographic features. Front Endocrinol (Lausanne), 2022, 13: 942569. doi: 10.3389/fendo.2022.942569. |
63. | Qu N, Zhang L, Ji QH et al. Number of tumor foci predicts prognosis in papillary thyroid cancer. BMC Cancer, 2014, 14: 914. doi: 10.1186/1471-2407-14-914. |
64. | Qu N, Zhang L, Wu WL et al. Bilaterality weighs more than unilateral multifocality in predicting prognosis in papillary thyroid cancer. Tumour Biol, 2016, 37(7): 8783-8789. |
65. | Qiu ZL, Shen CT, Sun ZK et al. Lung metastases from papillary thyroid cancer with persistently negative thyroglobulin and elevated thyroglobulin antibody levels during radioactive iodine treatment and follow-up: long-term outcomes and prognostic indicators. Front Endocrinol (Lausanne), 2020, 10: 903. doi: 10.3389/fendo.2019.00903. |
66. | Song HJ, Qiu ZL, Shen CT et al. Pulmonary metastases in differentiated thyroid cancer: efficacy of radioiodine therapy and prognostic factors. Eur J Endocrinol, 2015, 173(3): 399-408. |
67. | Qiu ZL, Song HJ, Xu YH et al. Efficacy and survival analysis of 131I therapy for bone metastases from differentiated thyroid cancer. J Clin Endocrinol Metab, 2011, 96(10): 3078-3086. |
68. | Shen CT, Qiu ZL, Luo QY. Sorafenib in the treatment of radioiodine-refractory differentiated thyroid cancer: a meta-analysis. Endocr Relat Cancer, 2014, 21(2): 253-261. |
69. | Qiu X, Cheng L, Sa R et al. Initial or salvage treatment with apatinib shows promise against radioiodine-refractory differentiated thyroid carcinoma. Eur Thyroid J, 2022, 11(2): e210065. doi: 10.1530/ETJ-21-0065. |
70. | Xu S, Li Z, Xu M et al. The role of carbon nanoparticle in lymph node detection and parathyroid gland protection during thyroidectomy for non-anaplastic thyroid carcinoma—a meta-analysis. PLoS One, 2020, 15(11): e0223627. doi: 10.1371/journal.pone.0223627. |
71. | Guo Y, Li Z, Wang S et al. Single-fiber laser ablation in treating selected metastatic lymph nodes of papillary thyroid carcinoma and benign cold thyroid nodules-preliminary results. Lasers Surg Med, 2020, 52(5): 408-418. |
72. | Liu W, Yan X, Dong Z et al. A mathematical model to assess the effect of residual positive lymph nodes on the survival of patients with papillary thyroid microcarcinoma. Front Oncol, 2022, 12: 855830. doi: 10.3389/fonc.2022.855830. |
73. | Wang B, Zhang K, Zhang X et al. Microwave ablation combined with cementoplasty under real-time temperature monitoring in the treatment of 82 patients with recurrent spinal metastases after radiotherapy. BMC Musculoskelet Disord, 2022, 23(1): 1025. doi: 10.1186/s12891-022-05999-y. |
74. | Li J, An C, Zheng H et al. Leukocyte telomere length and risk of papillary thyroid carcinoma. J Clin Endocrinol Metab, 2019, 104(7): 2712-2718. |
75. | Zhang C, Li Y, Li J et al. Total thyroidectomy versus lobectomy for papillary thyroid cancer: a systematic review and meta-analysis. Medicine (Baltimore), 2020, 99(6): e19073. doi: 10.1097/MD.0000000000019073. |
76. | Qu H, Sun GR, Liu Y et al. Clinical risk factors for central lymph node metastasis in papillary thyroid carcinoma: a systematic review and meta-analysis. Clin Endocrinol (Oxf), 2015, 83(1): 124-132. |
77. | Xiao J, Yun C, Cao J et al. A pre-ablative thyroid-stimulating hormone with 30-70 mIU/L achieves better response to initial radioiodine remnant ablation in differentiated thyroid carcinoma patients. Sci Rep, 2021, 11(1): 1348. doi: 10.1038/s41598-020-80015-8. |
78. | Cao J, Chen C, Chen C et al. Clinicopathological features and prognosis of familial papillary thyroid carcinoma--a large-scale, matched, case-control study. Clin Endocrinol (Oxf), 2016, 84(4): 598-606. |
79. | Zhang LZ, Xu JJ, Ge XY et al. Pathological analysis and surgical modalities selection of cT1N0M0 solitary papillary thyroid carcinoma in the isthmus. Gland Surg, 2021, 10(8): 2445-2454. |
80. | Cao J, Hu JL, Chen C et al. Vascular invasion is an independent prognostic factor for distant recurrence-free survival in papillary thyroid carcinoma: a matched-case comparative study. J Clin Pathol, 2016, 69(10): 872-877. |
81. | Xie Q, Wang P, Yan H et al. Feasibility and effectiveness of intraoperative nerve monitoring in total endoscopic thyroidectomy for thyroid cancer. J Laparoendosc Adv Surg Tech A, 2016, 26(2): 109-115. |
82. | Pei M, Zhu S, Zhang C et al. The value of intraoperative nerve monitoring against recurrent laryngeal nerve injury in thyroid reoperations. Medicine (Baltimore), 2021, 100(51): e28233. doi: 10.1097/MD.0000000000028233. |
83. | Yang Q, Zhao Z, Zhong G et al. Effect of adjuvant radioactive iodine therapy on survival in rare oxyphilic subtype of thyroid cancer (Hürthle cell carcinoma). PeerJ, 2019 Aug 27: 7: e7458. doi: 10.7717/peerj.7458. |
84. | Wang T, Jiang M, Ren Y et al. Health-related quality of life of community thyroid cancer survivors in Hangzhou, China. Thyroid, 2018, 28(8): 1013-1023. |
85. | Lu G, Chen L. Cervical lymph node metastases in papillary thyroid cancer: Preoperative staging with ultrasound and/or computed tomography. Medicine (Baltimore), 2022, 101(9): e28909. doi: 10.1097/MD.0000000000028909. |
86. | Chen W, Li J, Peng S et al. Association of total thyroidectomy or thyroid lobectomy with the quality of life in patients with differentiated thyroid cancer with low to intermediate risk of recurrence. JAMA Surg, 2022, 157(3): 200-209. |
87. | Kai H, Xixia L, Miaoyun L et al. Intraoperative nerve monitoring reduces recurrent laryngeal nerve injury in geriatric patients undergoing thyroid surgery. Acta Otolaryngol, 2017, 137(12): 1275-1280. |
88. | Li Y, Jian WH, Guo ZM et al. A meta-analysis of carbon nanoparticles for identifying lymph nodes and protecting parathyroid glands during surgery. Otolaryngol Head Neck Surg, 2015, 152(6): 1007-1016. |
89. | Liang TJ, Liu SI, Mok KT et al. Associations of volume and thyroidectomy outcomes: a nationwide study with systematic review and meta-analysis. Otolaryngol Head Neck Surg, 2016, 155(1): 65-75. |
90. | Wu CW, Dionigi G, Barczynski M et al. International neuromonitoring study group guidelines 2018: Part Ⅱ: optimal recurrent laryngeal nerve management for invasive thyroid cancer-incorporation of surgical, laryngeal, and neural electrophysiologic data. Laryngoscope, 2018 Oct: 128 Suppl 3: S18-S27. doi: 10.1002/lary.27360. |
91. | Jiang HJ, Hsiao PJ. Clinical application of the ultrasound-guided fine needle aspiration for thyroglobulin measurement to diagnose lymph node metastasis from differentiated thyroid carcinoma-literature review. Kaohsiung J Med Sci, 2020, 36(4): 236-243. |
92. | Chen B, Yan Y, Wang H et al. Association between genetically determined telomere length and health-related outcomes: a systematic review and meta-analysis of Mendelian randomization studies. Aging Cell, 2023, 22(7): e13874. doi: 10.1111/acel.13874. |
93. | Wang X, Cheng W, Li J et al. Endocrine tumours: familial nonmedullary thyroid carcinoma is a more aggressive disease: a systematic review and meta-analysis. Eur J Endocrinol, 2015, 172(6): R253-R262. doi: 10.1530/EJE-14-0960. |
94. | Xing Z, Qiu Y, Yang Q et al. Thyroid cancer neck lymph nodes metastasis: meta-analysis of US and CT diagnosis. Eur J Radiol, 2020, 129: 109103. doi: 10.1016/j.ejrad.2020.109103. |
95. | Wang X, Zheng X, Zhu J et al. Impact of extent of surgery on long-term prognosis of follicular thyroid carcinoma without extrathyroidal extension and distant metastasis. World J Surg, 2022, 46(1): 104-111. |
96. | Ma T, Wang H, Liu J et al. Should contralateral nodules be an indication of total or completion thyroidectomy for patients with unilateral papillary thyroid carcinoma?. Front Endocrinol (Lausanne), 2021, 12: 723631. doi: 10.3389/fendo.2021.723631. |
97. | Xiao L, Wu J, Jiang L et al. Is thyroid hormone supplementation avoidable for patients with low-risk papillary thyroid cancer after thyroid lobectomy? A two-center observational study. Clin Endocrinol (Oxf), 2022, 96(3): 413-418. |
98. | Wang X, Zheng X, Zhu J et al. Radioactive iodine therapy does not improve cancer-specific survival in hürthle cell carcinoma of the thyroid. J Clin Endocrinol Metab, 2022, 107(11): 3144-3151. |
99. | Su A, Gong Y, Wei T et al. A new classification of parathyroid glands to evaluate in situ preservation or autotransplantation during thyroid surgery. Medicine (Baltimore), 2018, 97(48): e13231. doi: 10.1097/MD.0000000000013231. |
100. | Wang B, Zhu CR, Liu H et al. The effectiveness of parathyroid gland autotransplantation in preserving parathyroid function during thyroid surgery for thyroid neoplasms: a meta-analysis. PLoS One, 2019, 14(8): e0221173. (三医院) doi: 10.1371/journal.pone.0221173. |
101. | Lu W, Chen Q, Zhang P et al. Near-infrared autofluorescence imaging in thyroid surgery: a systematic review and meta-analysis. J Invest Surg, 2022, 35(9): 1723-1732. |
102. | Li Z, Fei Y, Li Z et al. Outcome of parathyroid function after total thyroidectomy when calcium supplementation is administered routinely versus exclusively to symptomatic patients: a prospective randomized clinical trial. Endocrine, 2022, 75(2): 583-592. |
103. | Li GP, Lei JY, You JY et al. Independent predictors and lymph node metastasis characteristics of multifocal papillary thyroid cancer. Medicine (Baltimore), 2018, 97(5): e9619. doi: 10.1097/MD.0000000000009619. |
104. | Li G, Li R, Song L et al. Implications of extrathyroidal extension invading only the strap muscles in papillary thyroid carcinomas. Thyroid, 2020, 30(1): 57-64. |
105. | Tian T, Qi Z, Huang S et al. Radioactive iodine therapy decreases the recurrence of intermediate-risk PTC with low thyroglobulin levels. J Clin Endocrinol Metab, 2023, 108(8): 2033-2041. |
106. | Liu B, Peng W, Huang R et al. Thyroid cancer: radiation safety precautions in 131I therapy based on actual biokinetic measurements. Radiology, 2014, 273(1): 211-219. |
107. | Tian T, Huang R, Liu B. Is TSH suppression still necessary in intermediate- and high-risk papillary thyroid cancer patients with pre-ablation stimulated thyroglobulin <1 ng/mL before the first disease assessment?. Endocrine, 2019, 65(1): 149-154. |
108. | Wang H, Dai H, Li Q et al. Investigating 18F-FDG PET/CT parameters as prognostic markers for differentiated thyroid cancer: a systematic review. Front Oncol, 2021, 11: 648658. doi: 10.3389/fonc.2021.648658. |
109. | Tian T, Kou Y, Huang R et al. Prognosis of high-risk papillary thyroid cancer patients with pre-ablation stimulated Tg <1 ng/mL. Endocr Pract, 2019, 25(3): 220-225. |
110. | Feng G, Luo Y, Zhang Q et al. Sorafenib and radioiodine-refractory differentiated thyroid cancer (RR-DTC): a systematic review and meta-analysis. Endocrine, 2020, 68(1): 56-63. |
111. | Li J, Xue LB, Gong XY et al. Risk factors of deterioration in quality of life scores in thyroid cancer patients after thyroidectomy. Cancer Manag Res, 2019, 11: 10593-10598. |
112. | Li J, Zhang B, Bai Y et al. Health-related quality of life analysis in differentiated thyroid carcinoma patients after thyroidectomy. Sci Rep, 2020, 10(1): 5765. doi: 10.1038/s41598-020-62731-3. |
113. | Zhou X, Zheng Z, Chen C et al. Clinical characteristics and prognostic factors of Hurthle cell carcinoma: a population based study. BMC Cancer, 2020, 20(1): 407. doi: 10.1186/s12885-020-06915-0. |
114. | Liu J, Zhang Z, Huang H et al. Total thyroidectomy versus lobectomy for intermediate-risk papillary thyroid carcinoma: A single-institution matched-pair analysis. Oral Oncol, 2019, 90: 17-22. |
115. | Xu S, Huang H, Wang X et al. Long-term outcomes of lobectomy for papillary thyroid carcinoma with high-risk features. Br J Surg, 2021, 108(4): 395-402. |
116. | Xu S, Huang Y, Huang H et al. Optimal serum thyrotropin level for patients with papillary thyroid carcinoma after lobectomy. Thyroid, 2022, 32(2): 138-144. |
117. | Zhao W, You L, Hou X et al. The effect of prophylactic central neck dissection on locoregional recurrence in papillary thyroid cancer after total thyroidectomy: a systematic review and meta-analysis : pCND for the locoregional recurrence of papillary thyroid cancer. Ann Surg Oncol, 2017, 24(8): 2189-2198. |
118. | Ling Y, Zhao J, Zhao Y et al. Role of intraoperative neuromonitoring of recurrent laryngeal nerve in thyroid and parathyroid surgery. J Int Med Res, 2020, 48(9): 300060520952646. doi: 10.1177/0300060520952646. |
119. | Cui L, Feng D, Zhu C et al. Clinical outcomes of multifocal papillary thyroid cancer: a systematic review and meta-analysis. Laryngoscope Investig Otolaryngol, 2022, 7(4): 1224-1234. |
120. | Guang Y, Luo Y, Zhang Y et al. Efficacy and safety of percutaneous ultrasound guided radiofrequency ablation for treating cervical metastatic lymph nodes from papillary thyroid carcinoma. J Cancer Res Clin Oncol, 2017, 143(8): 1555-1562. |
121. | Lin YS, Yang H, Ding Y et al. Donafenib in progressive locally advanced or metastatic radioactive iodine-refractory differentiated thyroid cancer: results of a randomized, multicenter phase Ⅱ trial. Thyroid, 2021, 31(4): 607-615. |
122. | Lin YS, Zhang X, Wang C et al. Long-term results of a phase Ⅱ trial of apatinib for progressive radioiodine refractory differentiated thyroid cancer. J Clin Endocrinol Metab, 2021, 106(8): e3027-e3036. doi: 10.1210/clinem/dgab196. |
123. | Lin Y, Qin S, Li Z et al. Apatinib vs placebo in patients with locally advanced or metastatic, radioactive iodine-refractory differentiated thyroid cancer: The REALITY randomized clinical trial. JAMA Oncol, 2022, 8(2): 242-250. |
124. | Chi Y, Zheng X, Zhang Y et al. Anlotinib in locally advanced or metastatic radioiodine-refractory differentiated thyroid carcinoma: a randomized, double-blind, multicenter phase Ⅱ trial. Clin Cancer Res, 2023, 29(20): 4047-4056. |
125. | Xie WJ, Zhang S, Su L et al. The efficacy and safety of lenvatinib in the treatment of solid tumors: an up-to-date meta-analysis. Future Oncol, 2021, 17(6): 745-754. |
126. | Zhu XH, Zhou JN, Qian YY et al. Diagnostic values of thyroglobulin in lymph node fine-needle aspiration washout: a systematic review and meta-analysis diagnostic values of FNA-Tg. Endocr J, 2020, 67(2): 113-123. |
127. | Ren Y, Lu C, Xu S. Ultrasound-guided thermal ablation for papillary thyroid microcarcinoma: the devil is in the details. Int J Hyperthermia, 2023, 40(1): 2278823. doi: 10.1080/02656736.2023.2278823. |
128. | Gao X, Yang Y, Wang Y et al. Efficacy and safety of ultrasound-guided radiofrequency, microwave and laser ablation for the treatment of T1N0M0 papillary thyroid carcinoma on a large scale: a systematic review and meta-analysis. Int J Hyperthermia, 2023, 40(1): 2244713. doi: 10.1080/02656736.2023.2244713. |
129. | Zhang M, Luo Y, Zhang Y et al. Efficacy and safety of ultrasound-guided radiofrequency ablation for treating low-risk papillary thyroid microcarcinoma: a prospective study. Thyroid, 2016, 26(11): 1581-1587. |
130. | Teng DK, Li WH, Du JR et al. Effects of microwave ablation on papillary thyroid microcarcinoma: a five-year follow-up report. Thyroid, 2020, 30(12): 1752-1758. |
131. | Zhang M, Tufano RP, Russell JO et al. Ultrasound-guided radiofrequency ablation versus surgery for low-risk papillary thyroid microcarcinoma: results of over 5 years’ follow-up. Thyroid, 2020, 30(3): 408-417. |
132. | Yan L, Lan Y, Xiao J et al. Long-term outcomes of radiofrequency ablation for unifocal low-risk papillary thyroid microcarcinoma: a large cohort study of 414 patients. Eur Radiol, 2021, 31(2): 685-694. |
133. | Li X, Yan L, Xiao J et al. Long-term outcomes and risk factors of radiofrequency ablation for T1N0M0 papillary thyroid carcinoma. JAMA Surg, 2024, 159(1): 51-58. |
134. | Yan L, Zhang M, Song Q et al. Clinical outcomes of radiofrequency ablation for multifocal papillary thyroid microcarcinoma versus unifocal papillary thyroid microcarcinoma: a propensity-matched cohort study. Eur Radiol, 2022, 32(2): 1216-1226. |
135. | Yang J, Tang L, Qiu Y et al. Ultrasound-guided ablation for T1N0M0 papillary thyroid carcinoma adjacent and non-adjacent danger triangle area: a retrospective comparative study. Int J Hyperthermia, 2024, 41(1): 2419904. doi: 10.1080/02656736.2024.2419904. |
136. | Dong P, Teng DK, Sui GQ et al. Long-term efficacy of microwave ablation for multifocal papillary thyroid microcarcinoma: a 5-year follow-up study. Eur Radiol, 2024, 34(1): 715-723. |
137. | Tsui KP, Kwan WY, Chow TL. Total vs hemithyroidectomy for intermediate risk papillary thyroid cancer: a 23 year retrospective study in a tertiary center. Am J Otolaryngol, 2019, 40(3): 431-434. |
138. | Lang BH, Wong CKH. Lobectomy is a more cost-effective option than total thyroidectomy for 1 to 4 cm papillary thyroid carcinoma that do not possess clinically recognizable high-risk features. Ann Surg Oncol, 2016, 23(11): 3641-3652. |
139. | Chen JY, Huang NS, Wei WJ et al. The efficacy and safety of surufatinib combined with anti PD-1 antibody toripalimab in neoadjuvant treatment of locally advanced differentiated thyroid cancer: a phase Ⅱ study. Ann Surg Oncol, 2023, 30(12): 7172-7180. |
140. | Lang BH, Shek TW, Wan KY. Does microscopically involved margin increase disease recurrence after curative surgery in papillary thyroid carcinoma?. J Surg Oncol, 2016, 113(6): 635-639. |
141. | Lang BH, Shek TW, Wan KY. Impact of microscopic extra-nodal extension (ENE) on locoregional recurrence following curative surgery for papillary thyroid carcinoma. J Surg Oncol, 2016, 113(5): 526-531. |
142. | Lo CY, Kwok KF, Yuen PW. A prospective evaluation of recurrent laryngeal nerve paralysis during thyroidectomy. Arch Surg, 2000, 135(2): 204-207. |
143. | Chen B, Shi Y, Xu Y et al. The predictive value of coexisting BRAFV600E and TERT promoter mutations on poor outcomes and high tumour aggressiveness in papillary thyroid carcinoma: a systematic review and meta-analysis. Clin Endocrinol (Oxf), 2021, 94(5): 731-742. |
144. | Lee YC, Chen JY, Huang CJ et al. Detection of NTRK1/3 rearrangements in papillary thyroid carcinoma using immunohistochemistry, fluorescent in situ hybridization, and next-generation sequencing. Endocr Pathol, 2020, 31(4): 348-358. |
145. | Zhao Y. A novel mutation in PTEN in anaplastic thyroid carcinoma: a case report. Biomed Rep, 2024, 21(2): 127. doi: 10.3892/br.2024.1815. |
146. | Mu Z, Zhang X, Sun D et al. Characterizing genetic alterations related to radioiodine avidity in metastatic thyroid cancer. J Clin Endocrinol Metab, 2024, 109(5): 1231-1240. |
147. | Cao J, Zhu X, Sun Y et al. The genetic duet of BRAFV600E and TERT promoter mutations predicts the poor curative effect of radioiodine therapy in papillary thyroid cancer. Eur J Nucl Med Mol Imaging, 2022, 49(10): 3470-3481. |
148. | Liu Y, Wang J, Hu X et al. Radioiodine therapy in advanced differentiated thyroid cancer: resistance and overcoming strategy. Drug Resist Updat, 202, 68: 100939. doi: 10.1016/j.drup.2023.100939. |
149. | Teng CJ, Hu YW, Chen SC et al. Use of radioactive iodine for thyroid cancer and risk of second primary malignancy: a nationwide population-based study. J Natl Cancer Inst, 2015, 108(2): djv314. doi: 10.1093/jnci/djv314. |
150. | Sun Y, Han Y, Qian M et al. Defending effects of iodide transfer in placental barrier against maternal iodine deficiency. Thyroid, 2021, 31(3): 509-518. |
151. | Huang N, Zeng L, Yan J et al. Analysis of in vitro fertilization/intracytoplasmic sperm injection outcomes in infertile women with a history of thyroid cancer: a retrospective study. Reprod Biol Endocrinol, 2021, 19(1): 82. doi: 10.1186/s12958-021-00763-8. |
152. | Liu J, Liu Y, Lin Y et al. Radioactive iodine-refractory differentiated thyroid cancer and redifferentiation therapy. Endocrinol Metab (Seoul), 2019, 34(3): 215-225. |
153. | Zhong M, Khan FZ, He X et al. Impact of lung metastasis versus metastasis of bone, brain, or liver on overall survival and thyroid cancer-specific survival of thyroid cancer patients: a population-based study. Cancers (Basel), 2022, 14(13): 3133. doi: 10.3390/cancers14133133. |
154. | Xi C, Zhang Q, Song HJ et al. Pregnancy does not affect the prognoses of differentiated thyroid cancer patients with lung metastases. J Clin Endocrinol Metab, 2021, 106(8): e3185-e3197. doi: 10.1210/clinem/dgab111. |
155. | Shan R, Li X, Tao M et al. Pregnancy and the disease recurrence of patients previously treated for differentiated thyroid cancer: a systematic review and meta analysis. Chin Med J (Engl), 2024, 137(5): 547-555. |
156. | Xiao WC, Li X, Shan R et al. Pregnancy and progression of differentiated thyroid cancer: a propensity score-matched retrospective cohort study. J Clin Endocrinol Metab, 2024, 109(3): 837-843. |
157. | Liu D, Wei Y, Zhao Y et al. Obstetric outcomes in thyroid cancer survivors: a retrospective cohort study. Int J Gynaecol Obstet, 2021, 155(1): 119-124. |
158. | Yuan X, Zhao J, Wang J et al. Pregnancy outcomes and neonatal thyroid function in women with thyroid cancer: a retrospective study. BMC Pregnancy Childbirth, 2023, 23(1): 383. doi: 10.1186/s12884-023-05588-4. |
159. | Cheng SP, Liu CL. Preoperative ultrasonography assessment of vocal cord movement during thyroid and parathyroid surgery: reply. World J Surg, 2013, 37(7): 1741-1742. |
160. | Cooper DS, Doherty GM, Haugen BR et al. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid, 2006, 16(2): 109-142. |
161. | American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper DS, Doherty GM et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid, 2009, 19(11): 1167-1214. |
- 1. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid, 2016, 26(1): 1-133.
- 2. Ringel MD, Sosa JA, Baloch Z, et al. 2025 American Thyroid Association management guidelines for adult patients with differentiated thyroid cancer. Thyroid, 2025, 35(8): 841-985.
- 3. Cheng SP, Lee JJ, Lin JL, et al. Characterization of thyroid nodules using the proposed thyroid imaging reporting and data system (TI-RADS). Head Neck, 2013, 35(4): 541-547.
- 4. Lin KL, Wang OC, Zhang XH, et al. The BRAF mutation is predictive of aggressive clinicopathological characteristics in papillary thyroid microcarcinoma. Ann Surg Oncol, 2010, 17(12): 3294-3300.
- 5. Zheng X, Wei S, Han Y, et al. Papillary microcarcinoma of the thyroid: clinical characteristics and BRAF(V600E) mutational status of 977 cases. Ann Surg Oncol, 2013, 20(7): 2266-2273.
- 6. Liu S, Gao A, Zhang B, et al. Assessment of molecular testing in fine-needle aspiration biopsy samples: an experience in a Chinese population. Exp Mol Pathol, 2014, 97(2): 292-297.
- 7. Wang N, Zhai H, Lu Y. Is fluorine-18 fluorodeoxyglucose positron emission tomography useful for the thyroid nodules with indeterminate fine needle aspiration biopsy? A meta-analysis of the literature. J Otolaryngol Head Neck Surg, 2013, 42(1): 38.
- 8. Kung AW, Chau MT, Lao TT, et al. The effect of pregnancy on thyroid nodule formation. J Clin Endocrinol Metab, 2002, 87(3): 1010-1014.
- 9. Lin JD, Chao TC, Huang MJ, et al. Use of radioactive iodine for thyroid remnant ablation in well-differentiated thyroid carcinoma to replace thyroid reoperation. Am J Clin Oncol, 1998, 21(1): 77-81.
- 10. Lang BH, Wong KP, Wan KY, et al. Impact of routine unilateral central neck dissection on preablative and postablative stimulated thyroglobulin levels after total thyroidectomy in papillary thyroid carcinoma. Ann Surg Oncol, 2012, 19(1): 60-67.
- 11. Lang BH, Ng SH, Lau LL, et al. A systematic review and meta-analysis of prophylactic central neck dissection on short-term locoregional recurrence in papillary thyroid carcinoma after total thyroidectomy. Thyroid, 2013, 23(9): 1087-1098.
- 12. Cheng SP, Lee JJ, Liu TP, et al. Preoperative ultrasonography assessment of vocal cord movement during thyroid and parathyroid surgery. World J Surg, 2012, 36(10): 2509-2515.
- 13. Chan WF, Lang BH, Lo CY. The role of intraoperative neuromonitoring of recurrent laryngeal nerve during thyroidectomy: a comparative study on 1000 nerves at risk. Surgery, 2006, 140(6): 866-872.
- 14. Huang CC, Hsueh C, Liu FH, et al. Diagnostic and therapeutic strategies for minimally and widely invasive follicular thyroid carcinomas. Surg Oncol, 2011, 20(1): 1-6.
- 15. Lo CY, Chan WF, Lam KY, et al. Follicular thyroid carcinoma: the role of histology and staging systems in predicting survival. Ann Surg, 2005, 242(5): 708-715.
- 16. Lang BH, Chow SM, Lo CY, et al. Staging systems for papillary thyroid carcinoma: a study of 2 tertiary referral centers. Ann Surg, 2007, 246(1): 114-121.
- 17. Lang BH, Lo CY, Chan WF, et al. Staging systems for papillary thyroid carcinoma: a review and comparison. Ann Surg, 2007, 245(3): 366-378.
- 18. Lang BH, Lo CY, Chan WF, et al. Staging systems for follicular thyroid carcinoma: application to 171 consecutive patients treated in a tertiary referral centre. Endocr Relat Cancer, 2007, 14(1): 29-42.
- 19. Wong H, Wong KP, Yau T, et al. Is there a role for unstimulated thyroglobulin velocity in predicting recurrence in papillary thyroid carcinoma patients with detectable thyroglobulin after radioiodine ablation?. Ann Surg Oncol, 2012, 19(11): 3479-3485.
- 20. Lin JD, Huang MJ, Hsu BR, et al. Significance of postoperative serum thyroglobulin levels in patients with papillary and follicular thyroid carcinomas. J Surg Oncol, 2002, 80(1): 45-51.
- 21. Hu YH, Wang PW, Wang ST, et al. Influence of 131I diagnostic dose on subsequent ablation in patients with differentiated thyroid carcinoma: discrepancy between the presence of visually apparent stunning and the impairment of successful ablation. Nucl Med Commun, 2004, 25(8): 793-797.
- 22. Chow SM, Yau S, Kwan CK, et al. Local and regional control in patients with papillary thyroid carcinoma: specific indications of external radiotherapy and radioactive iodine according to T and N categories in AJCC 6th edition. Endocr Relat Cancer, 2006, 13(4): 1159-1172.
- 23. Tu J, Wang S, Huo Z, et al. Recombinant human thyrotropin-aided versus thyroid hormone withdrawal-aided radioiodine treatment for differentiated thyroid cancer after total thyroidectomy: a meta-analysis. Radiother Oncol, 2014, 110(1): 25-30.
- 24. Fang Y, Ding Y, Guo Q, et al. Radioiodine therapy for patients with differentiated thyroid cancer after thyroidectomy: direct comparison and network meta-analyses. J Endocrinol Invest, 2013, 36(10): 896-902.
- 25. Ma C, Tang L, Fu H, et al. rhTSH-aided low-activity versus high-activity regimens of radioiodine in residual ablation for differentiated thyroid cancer: a meta-analysis. Nucl Med Commun, 2013, 34(12): 1150-1156.
- 26. Cheng W, Ma C, Fu H, et al. Low- or high-dose radioiodine remnant ablation for differentiated thyroid carcinoma: a meta-analysis. J Clin Endocrinol Metab, 2013, 98(4): 1353-1360.
- 27. Chen L, Luo Q, Shen Y, et al. Incremental value of 131I SPECT/CT in the management of patients with differentiated thyroid carcinoma. J Nucl Med, 2008, 49(12): 1952-1957.
- 28. Chen CH, Chen JF, Yang BY, et al. Bone mineral density in women receiving thyroxine suppressive therapy for differentiated thyroid carcinoma. J Formos Med Assoc, 2004, 103(6): 442-447.
- 29. Wang PW, Wang ST, Liu RT, et al. Levothyroxine suppression of thyroglobulin in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab, 1999, 84(12): 4549-4553.
- 30. Chao TC, Jeng LB, Lin JD, et al. Reoperative thyroid surgery. World J Surg, 1997, 21(6): 644-647.
- 31. 葛俊恒, 赵瑞利, 胡俊兰, 等. 侵及气道和消化道的晚期甲状腺癌的外科治疗. 中华耳鼻咽喉科杂志, 2004, 39(4): 237-240.
- 32. Ma C, Xie J, Liu W, et al. Recombinant human thyrotropin (rhTSH) aided radioiodine treatment for residual or metastatic differentiated thyroid cancer. Cochrane Database Syst Rev, 2010, 2010(11): CD008302. doi: 10.1002/14651858.CD008302.pub2.
- 33. Lin JD, Chao TC, Chou SC, et al. Papillary thyroid carcinomas with lung metastases. Thyroid, 2004, 14(12): 1091-1096.
- 34. Lang BH, Wong IO, Wong KP, et al. Risk of second primary malignancy in differentiated thyroid carcinoma treated with radioactive iodine therapy. Surgery, 2012, 151(6): 844-850.
- 35. Ma C, Kuang A, Xie J. Radioiodine therapy for differentiated thyroid carcinoma with thyroglobulin positive and radioactive iodine negative metastases. Cochrane Database Syst Rev, 2009, 2009(1): CD006988. doi: 10.1002/14651858.CD006988.pub2.
- 36. Huang SH, Wang PW, Huang YE, et al. Sequential follow-up of serum thyroglobulin and whole body scan in thyroid cancer patients without initial metastasis. Thyroid, 2006, 16(12): 1273-1278.
- 37. Ma C, Xie J, Kuang A. Is empiric 131I therapy justified for patients with positive thyroglobulin and negative 131I whole-body scanning results? J Nucl Med, 2005, 46(7): 1164-1170.
- 38. Chao M. Management of differentiated thyroid cancer with rising thyroglobulin and negative diagnostic radioiodine whole body scan. Clin Oncol (R Coll Radiol), 2010, 22(6): 438-447.
- 39. Liu B, Kuang A, Huang R, et al. Influence of vitamin C on salivary absorbed dose of 131I in thyroid cancer patients: a prospective, randomized, single-blind, controlled trial. J Nucl Med, 2010, 51(4): 618-623.
- 40. Xue YL, Qiu ZL, Song HJ, et al. Value of 131I SPECT/CT for the evaluation of differentiated thyroid cancer: a systematic review of the literature. Eur J Nucl Med Mol Imaging, 2013, 40(5): 768-778.
- 41. Zhang L, Liu J, Wang P, et al. Impact of gross strap muscle invasion on outcome of differentiated thyroid cancer: systematic review and meta-analysis. Front Oncol, 2020, 10: 1687. doi: 10.3389/fonc.2020.01687.
- 42. Xue S, Wang P, Liu J et al. Total thyroidectomy may be more reasonable as initial surgery in unilateral multifocal papillary thyroid microcarcinoma: a single-center experience. World J Surg Oncol, 2017, 15(1): 62. doi: 10.1186/s12957-017-1130-7.
- 43. Wang T, Kim HY, Wu CW et al. Analyzing cost-effectiveness of neural-monitoring in recurrent laryngeal nerve recovery course in thyroid surgery. Int J Surg, 2017, 48: 180-188.
- 44. Xue S, Zhang L, Wang P et al. Predictive factors of recurrence for multifocal papillary thyroid microcarcinoma with BRAFV600E mutation: a single center study of 1 207 Chinese patients. Front Endocrinol (Lausanne), 2019, 10: 407. doi: 10.3389/fendo.2019.00407.
- 45. Qichang W, Lin B, Gege Z et al. Diagnostic performance of 18F-FDG-PET/CT in DTC patients with thyroglobulin elevation and negative iodine scintigraphy: a meta-analysis. Eur J Endocrinol, 2019, 181(2): 93-102.
- 46. Wan B, Deng P, Dai W et al. Association between programmed cell death ligand 1 expression and thyroid cancer: a meta-analysis. Medicine (Baltimore), 2021, 100(14): e25315. doi: 10.1097/MD.0000000000025315.
- 47. Chow SM, Law SC, Chan JK et al. Papillary microcarcinoma of the thyroid-Prognostic significance of lymph node metastasis and multifocality. Cancer, 2003, 98(1): 31-40.
- 48. Chan WL, Choi HC, Lang B et al. Health-related quality of life in Asian differentiated thyroid cancer survivors. Cancer Control, 2021, 28: 10732748211029726. doi: 10.1177/10732748211029726.
- 49. Lang BH, Shek TW, Chan AO et al. Significance of size of persistent/recurrent central nodal disease on surgical morbidity and response to therapy in reoperative neck dissection for papillary thyroid carcinoma. Thyroid, 2017, 27(1): 67-73.
- 50. Zhao H, Cui L. Extent of surgery and the prognosis of unilateral papillary thyroid microcarcinoma. Front Endocrinol (Lausanne), 2021, 12: 655608. doi: 10.3389/fendo.2021.655608.
- 51. Wu Z, Xiao Y, Ming J et al. Reevaluation of criteria and establishment of models for total thyroidectomy in differentiated thyroid cancer. Front Oncol, 2021, 11: 691341. doi: 10.3389/fonc.2021.691341.
- 52. Yuan Q, Zheng L, Hou J et al. Visual identification and neuromonitoring vs. no sighting the external branch of the superior laryngeal nerve in thyroid surgery: a randomized clinical trial. Updates Surg, 2022, 74(2): 727-734.
- 53. Zhao H, Li H. Meta-analysis of ultrasound for cervical lymph nodes in papillary thyroid cancer: diagnosis of central and lateral compartment nodal metastases. Eur J Radiol, 2019, 112: 14-21.
- 54. Wang Y, Duan Y, Zhou M et al. The diagnostic value of thyroglobulin in fine-needle aspiration of metastatic lymph nodes in patients with papillary thyroid cancer and its influential factors. Surg Oncol, 2021 Dec: 39: 101666.
- 55. Sun D, Zheng X, He X et al. Prognostic value and dynamics of antithyroglobulin antibodies for differentiated thyroid carcinoma. Biomark Med, 2020, 14(18): 1683-1692.
- 56. Zheng X, Xu Z, Ji Q et al. A randomized, phase Ⅲ study of lenvatinib in chinese patients with radioiodine-refractory differentiated thyroid cancer. Clin Cancer Res, 2021, 27(20): 5502-5509.
- 57. Wu SY, Shen HY, Duh QY, et al. Routine intraoperative neuromonitoring of the recurrent laryngeal nerve to facilitate complete resection and ensure safety in thyroid cancer surgery. Am Surg, 2018, 84(12): 1882-1888.
- 58. Wu MH, Shen WT, Gosnell J et al. Prognostic significance of extranodal extension of regional lymph node metastasis in papillary thyroid cancer. Head Neck, 2015, 37(9): 1336-1343.
- 59. Wang SR, Li QL, Tian F et al. Diagnostic value of multiple diagnostic methods for lymph node metastases of papillary thyroid carcinoma: a systematic review and meta-analysis. Front Oncol, 2022, 12: 990603. doi: 10.3389/fonc.2022.990603.
- 60. Wang L, Yang D, Lv JY et al. Application of carbon nanoparticles in lymph node dissection and parathyroid protection during thyroid cancer surgeries: a systematic review and meta-analysis. Onco Targets Ther, 2017, 10: 1247-1260.
- 61. Zhang T, He L, Wang Z et al. The differences between multifocal and unifocal papillary thyroid carcinoma in unilateral lobe: a meta-analysis. Front Oncol, 2021, 11: 657237. doi: 10.3389/fonc.2021.657237.
- 62. Ni X, Xu S, Zhan W et al. A risk stratification model for metastatic lymph nodes of papillary thyroid cancer: a retrospective study based on sonographic features. Front Endocrinol (Lausanne), 2022, 13: 942569. doi: 10.3389/fendo.2022.942569.
- 63. Qu N, Zhang L, Ji QH et al. Number of tumor foci predicts prognosis in papillary thyroid cancer. BMC Cancer, 2014, 14: 914. doi: 10.1186/1471-2407-14-914.
- 64. Qu N, Zhang L, Wu WL et al. Bilaterality weighs more than unilateral multifocality in predicting prognosis in papillary thyroid cancer. Tumour Biol, 2016, 37(7): 8783-8789.
- 65. Qiu ZL, Shen CT, Sun ZK et al. Lung metastases from papillary thyroid cancer with persistently negative thyroglobulin and elevated thyroglobulin antibody levels during radioactive iodine treatment and follow-up: long-term outcomes and prognostic indicators. Front Endocrinol (Lausanne), 2020, 10: 903. doi: 10.3389/fendo.2019.00903.
- 66. Song HJ, Qiu ZL, Shen CT et al. Pulmonary metastases in differentiated thyroid cancer: efficacy of radioiodine therapy and prognostic factors. Eur J Endocrinol, 2015, 173(3): 399-408.
- 67. Qiu ZL, Song HJ, Xu YH et al. Efficacy and survival analysis of 131I therapy for bone metastases from differentiated thyroid cancer. J Clin Endocrinol Metab, 2011, 96(10): 3078-3086.
- 68. Shen CT, Qiu ZL, Luo QY. Sorafenib in the treatment of radioiodine-refractory differentiated thyroid cancer: a meta-analysis. Endocr Relat Cancer, 2014, 21(2): 253-261.
- 69. Qiu X, Cheng L, Sa R et al. Initial or salvage treatment with apatinib shows promise against radioiodine-refractory differentiated thyroid carcinoma. Eur Thyroid J, 2022, 11(2): e210065. doi: 10.1530/ETJ-21-0065.
- 70. Xu S, Li Z, Xu M et al. The role of carbon nanoparticle in lymph node detection and parathyroid gland protection during thyroidectomy for non-anaplastic thyroid carcinoma—a meta-analysis. PLoS One, 2020, 15(11): e0223627. doi: 10.1371/journal.pone.0223627.
- 71. Guo Y, Li Z, Wang S et al. Single-fiber laser ablation in treating selected metastatic lymph nodes of papillary thyroid carcinoma and benign cold thyroid nodules-preliminary results. Lasers Surg Med, 2020, 52(5): 408-418.
- 72. Liu W, Yan X, Dong Z et al. A mathematical model to assess the effect of residual positive lymph nodes on the survival of patients with papillary thyroid microcarcinoma. Front Oncol, 2022, 12: 855830. doi: 10.3389/fonc.2022.855830.
- 73. Wang B, Zhang K, Zhang X et al. Microwave ablation combined with cementoplasty under real-time temperature monitoring in the treatment of 82 patients with recurrent spinal metastases after radiotherapy. BMC Musculoskelet Disord, 2022, 23(1): 1025. doi: 10.1186/s12891-022-05999-y.
- 74. Li J, An C, Zheng H et al. Leukocyte telomere length and risk of papillary thyroid carcinoma. J Clin Endocrinol Metab, 2019, 104(7): 2712-2718.
- 75. Zhang C, Li Y, Li J et al. Total thyroidectomy versus lobectomy for papillary thyroid cancer: a systematic review and meta-analysis. Medicine (Baltimore), 2020, 99(6): e19073. doi: 10.1097/MD.0000000000019073.
- 76. Qu H, Sun GR, Liu Y et al. Clinical risk factors for central lymph node metastasis in papillary thyroid carcinoma: a systematic review and meta-analysis. Clin Endocrinol (Oxf), 2015, 83(1): 124-132.
- 77. Xiao J, Yun C, Cao J et al. A pre-ablative thyroid-stimulating hormone with 30-70 mIU/L achieves better response to initial radioiodine remnant ablation in differentiated thyroid carcinoma patients. Sci Rep, 2021, 11(1): 1348. doi: 10.1038/s41598-020-80015-8.
- 78. Cao J, Chen C, Chen C et al. Clinicopathological features and prognosis of familial papillary thyroid carcinoma--a large-scale, matched, case-control study. Clin Endocrinol (Oxf), 2016, 84(4): 598-606.
- 79. Zhang LZ, Xu JJ, Ge XY et al. Pathological analysis and surgical modalities selection of cT1N0M0 solitary papillary thyroid carcinoma in the isthmus. Gland Surg, 2021, 10(8): 2445-2454.
- 80. Cao J, Hu JL, Chen C et al. Vascular invasion is an independent prognostic factor for distant recurrence-free survival in papillary thyroid carcinoma: a matched-case comparative study. J Clin Pathol, 2016, 69(10): 872-877.
- 81. Xie Q, Wang P, Yan H et al. Feasibility and effectiveness of intraoperative nerve monitoring in total endoscopic thyroidectomy for thyroid cancer. J Laparoendosc Adv Surg Tech A, 2016, 26(2): 109-115.
- 82. Pei M, Zhu S, Zhang C et al. The value of intraoperative nerve monitoring against recurrent laryngeal nerve injury in thyroid reoperations. Medicine (Baltimore), 2021, 100(51): e28233. doi: 10.1097/MD.0000000000028233.
- 83. Yang Q, Zhao Z, Zhong G et al. Effect of adjuvant radioactive iodine therapy on survival in rare oxyphilic subtype of thyroid cancer (Hürthle cell carcinoma). PeerJ, 2019 Aug 27: 7: e7458. doi: 10.7717/peerj.7458.
- 84. Wang T, Jiang M, Ren Y et al. Health-related quality of life of community thyroid cancer survivors in Hangzhou, China. Thyroid, 2018, 28(8): 1013-1023.
- 85. Lu G, Chen L. Cervical lymph node metastases in papillary thyroid cancer: Preoperative staging with ultrasound and/or computed tomography. Medicine (Baltimore), 2022, 101(9): e28909. doi: 10.1097/MD.0000000000028909.
- 86. Chen W, Li J, Peng S et al. Association of total thyroidectomy or thyroid lobectomy with the quality of life in patients with differentiated thyroid cancer with low to intermediate risk of recurrence. JAMA Surg, 2022, 157(3): 200-209.
- 87. Kai H, Xixia L, Miaoyun L et al. Intraoperative nerve monitoring reduces recurrent laryngeal nerve injury in geriatric patients undergoing thyroid surgery. Acta Otolaryngol, 2017, 137(12): 1275-1280.
- 88. Li Y, Jian WH, Guo ZM et al. A meta-analysis of carbon nanoparticles for identifying lymph nodes and protecting parathyroid glands during surgery. Otolaryngol Head Neck Surg, 2015, 152(6): 1007-1016.
- 89. Liang TJ, Liu SI, Mok KT et al. Associations of volume and thyroidectomy outcomes: a nationwide study with systematic review and meta-analysis. Otolaryngol Head Neck Surg, 2016, 155(1): 65-75.
- 90. Wu CW, Dionigi G, Barczynski M et al. International neuromonitoring study group guidelines 2018: Part Ⅱ: optimal recurrent laryngeal nerve management for invasive thyroid cancer-incorporation of surgical, laryngeal, and neural electrophysiologic data. Laryngoscope, 2018 Oct: 128 Suppl 3: S18-S27. doi: 10.1002/lary.27360.
- 91. Jiang HJ, Hsiao PJ. Clinical application of the ultrasound-guided fine needle aspiration for thyroglobulin measurement to diagnose lymph node metastasis from differentiated thyroid carcinoma-literature review. Kaohsiung J Med Sci, 2020, 36(4): 236-243.
- 92. Chen B, Yan Y, Wang H et al. Association between genetically determined telomere length and health-related outcomes: a systematic review and meta-analysis of Mendelian randomization studies. Aging Cell, 2023, 22(7): e13874. doi: 10.1111/acel.13874.
- 93. Wang X, Cheng W, Li J et al. Endocrine tumours: familial nonmedullary thyroid carcinoma is a more aggressive disease: a systematic review and meta-analysis. Eur J Endocrinol, 2015, 172(6): R253-R262. doi: 10.1530/EJE-14-0960.
- 94. Xing Z, Qiu Y, Yang Q et al. Thyroid cancer neck lymph nodes metastasis: meta-analysis of US and CT diagnosis. Eur J Radiol, 2020, 129: 109103. doi: 10.1016/j.ejrad.2020.109103.
- 95. Wang X, Zheng X, Zhu J et al. Impact of extent of surgery on long-term prognosis of follicular thyroid carcinoma without extrathyroidal extension and distant metastasis. World J Surg, 2022, 46(1): 104-111.
- 96. Ma T, Wang H, Liu J et al. Should contralateral nodules be an indication of total or completion thyroidectomy for patients with unilateral papillary thyroid carcinoma?. Front Endocrinol (Lausanne), 2021, 12: 723631. doi: 10.3389/fendo.2021.723631.
- 97. Xiao L, Wu J, Jiang L et al. Is thyroid hormone supplementation avoidable for patients with low-risk papillary thyroid cancer after thyroid lobectomy? A two-center observational study. Clin Endocrinol (Oxf), 2022, 96(3): 413-418.
- 98. Wang X, Zheng X, Zhu J et al. Radioactive iodine therapy does not improve cancer-specific survival in hürthle cell carcinoma of the thyroid. J Clin Endocrinol Metab, 2022, 107(11): 3144-3151.
- 99. Su A, Gong Y, Wei T et al. A new classification of parathyroid glands to evaluate in situ preservation or autotransplantation during thyroid surgery. Medicine (Baltimore), 2018, 97(48): e13231. doi: 10.1097/MD.0000000000013231.
- 100. Wang B, Zhu CR, Liu H et al. The effectiveness of parathyroid gland autotransplantation in preserving parathyroid function during thyroid surgery for thyroid neoplasms: a meta-analysis. PLoS One, 2019, 14(8): e0221173. (三医院) doi: 10.1371/journal.pone.0221173.
- 101. Lu W, Chen Q, Zhang P et al. Near-infrared autofluorescence imaging in thyroid surgery: a systematic review and meta-analysis. J Invest Surg, 2022, 35(9): 1723-1732.
- 102. Li Z, Fei Y, Li Z et al. Outcome of parathyroid function after total thyroidectomy when calcium supplementation is administered routinely versus exclusively to symptomatic patients: a prospective randomized clinical trial. Endocrine, 2022, 75(2): 583-592.
- 103. Li GP, Lei JY, You JY et al. Independent predictors and lymph node metastasis characteristics of multifocal papillary thyroid cancer. Medicine (Baltimore), 2018, 97(5): e9619. doi: 10.1097/MD.0000000000009619.
- 104. Li G, Li R, Song L et al. Implications of extrathyroidal extension invading only the strap muscles in papillary thyroid carcinomas. Thyroid, 2020, 30(1): 57-64.
- 105. Tian T, Qi Z, Huang S et al. Radioactive iodine therapy decreases the recurrence of intermediate-risk PTC with low thyroglobulin levels. J Clin Endocrinol Metab, 2023, 108(8): 2033-2041.
- 106. Liu B, Peng W, Huang R et al. Thyroid cancer: radiation safety precautions in 131I therapy based on actual biokinetic measurements. Radiology, 2014, 273(1): 211-219.
- 107. Tian T, Huang R, Liu B. Is TSH suppression still necessary in intermediate- and high-risk papillary thyroid cancer patients with pre-ablation stimulated thyroglobulin <1 ng/mL before the first disease assessment?. Endocrine, 2019, 65(1): 149-154.
- 108. Wang H, Dai H, Li Q et al. Investigating 18F-FDG PET/CT parameters as prognostic markers for differentiated thyroid cancer: a systematic review. Front Oncol, 2021, 11: 648658. doi: 10.3389/fonc.2021.648658.
- 109. Tian T, Kou Y, Huang R et al. Prognosis of high-risk papillary thyroid cancer patients with pre-ablation stimulated Tg <1 ng/mL. Endocr Pract, 2019, 25(3): 220-225.
- 110. Feng G, Luo Y, Zhang Q et al. Sorafenib and radioiodine-refractory differentiated thyroid cancer (RR-DTC): a systematic review and meta-analysis. Endocrine, 2020, 68(1): 56-63.
- 111. Li J, Xue LB, Gong XY et al. Risk factors of deterioration in quality of life scores in thyroid cancer patients after thyroidectomy. Cancer Manag Res, 2019, 11: 10593-10598.
- 112. Li J, Zhang B, Bai Y et al. Health-related quality of life analysis in differentiated thyroid carcinoma patients after thyroidectomy. Sci Rep, 2020, 10(1): 5765. doi: 10.1038/s41598-020-62731-3.
- 113. Zhou X, Zheng Z, Chen C et al. Clinical characteristics and prognostic factors of Hurthle cell carcinoma: a population based study. BMC Cancer, 2020, 20(1): 407. doi: 10.1186/s12885-020-06915-0.
- 114. Liu J, Zhang Z, Huang H et al. Total thyroidectomy versus lobectomy for intermediate-risk papillary thyroid carcinoma: A single-institution matched-pair analysis. Oral Oncol, 2019, 90: 17-22.
- 115. Xu S, Huang H, Wang X et al. Long-term outcomes of lobectomy for papillary thyroid carcinoma with high-risk features. Br J Surg, 2021, 108(4): 395-402.
- 116. Xu S, Huang Y, Huang H et al. Optimal serum thyrotropin level for patients with papillary thyroid carcinoma after lobectomy. Thyroid, 2022, 32(2): 138-144.
- 117. Zhao W, You L, Hou X et al. The effect of prophylactic central neck dissection on locoregional recurrence in papillary thyroid cancer after total thyroidectomy: a systematic review and meta-analysis : pCND for the locoregional recurrence of papillary thyroid cancer. Ann Surg Oncol, 2017, 24(8): 2189-2198.
- 118. Ling Y, Zhao J, Zhao Y et al. Role of intraoperative neuromonitoring of recurrent laryngeal nerve in thyroid and parathyroid surgery. J Int Med Res, 2020, 48(9): 300060520952646. doi: 10.1177/0300060520952646.
- 119. Cui L, Feng D, Zhu C et al. Clinical outcomes of multifocal papillary thyroid cancer: a systematic review and meta-analysis. Laryngoscope Investig Otolaryngol, 2022, 7(4): 1224-1234.
- 120. Guang Y, Luo Y, Zhang Y et al. Efficacy and safety of percutaneous ultrasound guided radiofrequency ablation for treating cervical metastatic lymph nodes from papillary thyroid carcinoma. J Cancer Res Clin Oncol, 2017, 143(8): 1555-1562.
- 121. Lin YS, Yang H, Ding Y et al. Donafenib in progressive locally advanced or metastatic radioactive iodine-refractory differentiated thyroid cancer: results of a randomized, multicenter phase Ⅱ trial. Thyroid, 2021, 31(4): 607-615.
- 122. Lin YS, Zhang X, Wang C et al. Long-term results of a phase Ⅱ trial of apatinib for progressive radioiodine refractory differentiated thyroid cancer. J Clin Endocrinol Metab, 2021, 106(8): e3027-e3036. doi: 10.1210/clinem/dgab196.
- 123. Lin Y, Qin S, Li Z et al. Apatinib vs placebo in patients with locally advanced or metastatic, radioactive iodine-refractory differentiated thyroid cancer: The REALITY randomized clinical trial. JAMA Oncol, 2022, 8(2): 242-250.
- 124. Chi Y, Zheng X, Zhang Y et al. Anlotinib in locally advanced or metastatic radioiodine-refractory differentiated thyroid carcinoma: a randomized, double-blind, multicenter phase Ⅱ trial. Clin Cancer Res, 2023, 29(20): 4047-4056.
- 125. Xie WJ, Zhang S, Su L et al. The efficacy and safety of lenvatinib in the treatment of solid tumors: an up-to-date meta-analysis. Future Oncol, 2021, 17(6): 745-754.
- 126. Zhu XH, Zhou JN, Qian YY et al. Diagnostic values of thyroglobulin in lymph node fine-needle aspiration washout: a systematic review and meta-analysis diagnostic values of FNA-Tg. Endocr J, 2020, 67(2): 113-123.
- 127. Ren Y, Lu C, Xu S. Ultrasound-guided thermal ablation for papillary thyroid microcarcinoma: the devil is in the details. Int J Hyperthermia, 2023, 40(1): 2278823. doi: 10.1080/02656736.2023.2278823.
- 128. Gao X, Yang Y, Wang Y et al. Efficacy and safety of ultrasound-guided radiofrequency, microwave and laser ablation for the treatment of T1N0M0 papillary thyroid carcinoma on a large scale: a systematic review and meta-analysis. Int J Hyperthermia, 2023, 40(1): 2244713. doi: 10.1080/02656736.2023.2244713.
- 129. Zhang M, Luo Y, Zhang Y et al. Efficacy and safety of ultrasound-guided radiofrequency ablation for treating low-risk papillary thyroid microcarcinoma: a prospective study. Thyroid, 2016, 26(11): 1581-1587.
- 130. Teng DK, Li WH, Du JR et al. Effects of microwave ablation on papillary thyroid microcarcinoma: a five-year follow-up report. Thyroid, 2020, 30(12): 1752-1758.
- 131. Zhang M, Tufano RP, Russell JO et al. Ultrasound-guided radiofrequency ablation versus surgery for low-risk papillary thyroid microcarcinoma: results of over 5 years’ follow-up. Thyroid, 2020, 30(3): 408-417.
- 132. Yan L, Lan Y, Xiao J et al. Long-term outcomes of radiofrequency ablation for unifocal low-risk papillary thyroid microcarcinoma: a large cohort study of 414 patients. Eur Radiol, 2021, 31(2): 685-694.
- 133. Li X, Yan L, Xiao J et al. Long-term outcomes and risk factors of radiofrequency ablation for T1N0M0 papillary thyroid carcinoma. JAMA Surg, 2024, 159(1): 51-58.
- 134. Yan L, Zhang M, Song Q et al. Clinical outcomes of radiofrequency ablation for multifocal papillary thyroid microcarcinoma versus unifocal papillary thyroid microcarcinoma: a propensity-matched cohort study. Eur Radiol, 2022, 32(2): 1216-1226.
- 135. Yang J, Tang L, Qiu Y et al. Ultrasound-guided ablation for T1N0M0 papillary thyroid carcinoma adjacent and non-adjacent danger triangle area: a retrospective comparative study. Int J Hyperthermia, 2024, 41(1): 2419904. doi: 10.1080/02656736.2024.2419904.
- 136. Dong P, Teng DK, Sui GQ et al. Long-term efficacy of microwave ablation for multifocal papillary thyroid microcarcinoma: a 5-year follow-up study. Eur Radiol, 2024, 34(1): 715-723.
- 137. Tsui KP, Kwan WY, Chow TL. Total vs hemithyroidectomy for intermediate risk papillary thyroid cancer: a 23 year retrospective study in a tertiary center. Am J Otolaryngol, 2019, 40(3): 431-434.
- 138. Lang BH, Wong CKH. Lobectomy is a more cost-effective option than total thyroidectomy for 1 to 4 cm papillary thyroid carcinoma that do not possess clinically recognizable high-risk features. Ann Surg Oncol, 2016, 23(11): 3641-3652.
- 139. Chen JY, Huang NS, Wei WJ et al. The efficacy and safety of surufatinib combined with anti PD-1 antibody toripalimab in neoadjuvant treatment of locally advanced differentiated thyroid cancer: a phase Ⅱ study. Ann Surg Oncol, 2023, 30(12): 7172-7180.
- 140. Lang BH, Shek TW, Wan KY. Does microscopically involved margin increase disease recurrence after curative surgery in papillary thyroid carcinoma?. J Surg Oncol, 2016, 113(6): 635-639.
- 141. Lang BH, Shek TW, Wan KY. Impact of microscopic extra-nodal extension (ENE) on locoregional recurrence following curative surgery for papillary thyroid carcinoma. J Surg Oncol, 2016, 113(5): 526-531.
- 142. Lo CY, Kwok KF, Yuen PW. A prospective evaluation of recurrent laryngeal nerve paralysis during thyroidectomy. Arch Surg, 2000, 135(2): 204-207.
- 143. Chen B, Shi Y, Xu Y et al. The predictive value of coexisting BRAFV600E and TERT promoter mutations on poor outcomes and high tumour aggressiveness in papillary thyroid carcinoma: a systematic review and meta-analysis. Clin Endocrinol (Oxf), 2021, 94(5): 731-742.
- 144. Lee YC, Chen JY, Huang CJ et al. Detection of NTRK1/3 rearrangements in papillary thyroid carcinoma using immunohistochemistry, fluorescent in situ hybridization, and next-generation sequencing. Endocr Pathol, 2020, 31(4): 348-358.
- 145. Zhao Y. A novel mutation in PTEN in anaplastic thyroid carcinoma: a case report. Biomed Rep, 2024, 21(2): 127. doi: 10.3892/br.2024.1815.
- 146. Mu Z, Zhang X, Sun D et al. Characterizing genetic alterations related to radioiodine avidity in metastatic thyroid cancer. J Clin Endocrinol Metab, 2024, 109(5): 1231-1240.
- 147. Cao J, Zhu X, Sun Y et al. The genetic duet of BRAFV600E and TERT promoter mutations predicts the poor curative effect of radioiodine therapy in papillary thyroid cancer. Eur J Nucl Med Mol Imaging, 2022, 49(10): 3470-3481.
- 148. Liu Y, Wang J, Hu X et al. Radioiodine therapy in advanced differentiated thyroid cancer: resistance and overcoming strategy. Drug Resist Updat, 202, 68: 100939. doi: 10.1016/j.drup.2023.100939.
- 149. Teng CJ, Hu YW, Chen SC et al. Use of radioactive iodine for thyroid cancer and risk of second primary malignancy: a nationwide population-based study. J Natl Cancer Inst, 2015, 108(2): djv314. doi: 10.1093/jnci/djv314.
- 150. Sun Y, Han Y, Qian M et al. Defending effects of iodide transfer in placental barrier against maternal iodine deficiency. Thyroid, 2021, 31(3): 509-518.
- 151. Huang N, Zeng L, Yan J et al. Analysis of in vitro fertilization/intracytoplasmic sperm injection outcomes in infertile women with a history of thyroid cancer: a retrospective study. Reprod Biol Endocrinol, 2021, 19(1): 82. doi: 10.1186/s12958-021-00763-8.
- 152. Liu J, Liu Y, Lin Y et al. Radioactive iodine-refractory differentiated thyroid cancer and redifferentiation therapy. Endocrinol Metab (Seoul), 2019, 34(3): 215-225.
- 153. Zhong M, Khan FZ, He X et al. Impact of lung metastasis versus metastasis of bone, brain, or liver on overall survival and thyroid cancer-specific survival of thyroid cancer patients: a population-based study. Cancers (Basel), 2022, 14(13): 3133. doi: 10.3390/cancers14133133.
- 154. Xi C, Zhang Q, Song HJ et al. Pregnancy does not affect the prognoses of differentiated thyroid cancer patients with lung metastases. J Clin Endocrinol Metab, 2021, 106(8): e3185-e3197. doi: 10.1210/clinem/dgab111.
- 155. Shan R, Li X, Tao M et al. Pregnancy and the disease recurrence of patients previously treated for differentiated thyroid cancer: a systematic review and meta analysis. Chin Med J (Engl), 2024, 137(5): 547-555.
- 156. Xiao WC, Li X, Shan R et al. Pregnancy and progression of differentiated thyroid cancer: a propensity score-matched retrospective cohort study. J Clin Endocrinol Metab, 2024, 109(3): 837-843.
- 157. Liu D, Wei Y, Zhao Y et al. Obstetric outcomes in thyroid cancer survivors: a retrospective cohort study. Int J Gynaecol Obstet, 2021, 155(1): 119-124.
- 158. Yuan X, Zhao J, Wang J et al. Pregnancy outcomes and neonatal thyroid function in women with thyroid cancer: a retrospective study. BMC Pregnancy Childbirth, 2023, 23(1): 383. doi: 10.1186/s12884-023-05588-4.
- 159. Cheng SP, Liu CL. Preoperative ultrasonography assessment of vocal cord movement during thyroid and parathyroid surgery: reply. World J Surg, 2013, 37(7): 1741-1742.
- 160. Cooper DS, Doherty GM, Haugen BR et al. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid, 2006, 16(2): 109-142.
- 161. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper DS, Doherty GM et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid, 2009, 19(11): 1167-1214.