Extensive hepatectomy can achieve a higher chance of radical resection of lesions in the hepatobiliary system, but the risk of fatal complications of severe liver failure after surgery also increases accordingly. Therefore, enhancing the liver’s regenerative capacity has always been a hot topic in clinical research. Portal vein blood supply is of great significance for maintaining the normal function of the liver and promoting the repair and proliferation of damaged liver tissue. After selectively altering the blood flow distribution in the portal vein, atrophy or proliferation will occur in different liver lobes. The discovery of the important physiological phenomenon of liver regeneration induced by deportalized blood flow of portal vein has made it possible to promote the volume growth and functional enhancement of the residual liver lobes before hepatectomy, and various technical schemes have been applied and developed in clinical practice. The interim research results show that the portal vein embolization technique is mature, has less trauma, but the induction speed is relatively slow. Portal vein combined with hepatic vein embolization has better induction efficacy and does not increase embolism-related complications, and has a wider range of applications. The induction ability of associating liver partition and portal vein ligation for staged hepatectomy is significant, but the surgical trauma is large, and there are higher requirements for perioperative management. There is a clear correlation between high surgical volume centers and technical improvements and a significant reduction in complications. Resection and partial liver transplantation with delayed total hepatectomy not only break through the bottlenecks of safety and ethical requirements for living donor liver transplantation in adults, but also innovate and enrich the second-stage extensive hepatectomy schemes. However, their technical standards and application scope still need more high-quality research evidence to support them.
Copyright © the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
1. | Ishikawa J, Takeo M, Iwadate A, et al. Mechanical homeostasis of liver sinusoid is involved in the initiation and termination of liver regeneration. Commun Biol, 2021, 4(1): 409. doi: 10.1038/s42003-021-01936-2. |
2. | Kim M, Park Y, Kim YS, et al. Cellular plasticity in gut and liver regeneration. Gut Liver, 2024, 18(6): 949-960. |
3. | Liu Q, Wang S, Fu J, et al. Liver regeneration after injury: mechanisms, cellular interactions and therapeutic innovations. Clin Transl Med, 2024, 14(8): e1812. doi: 10.1002/ctm2.1812. |
4. | Li Z, Sun X. Epigenetic regulation in liver regeneration. Life Sci, 2024, 353: 122924. doi: 10.1016/j.lfs.2024.122924. |
5. | Ma X, Huang T, Chen X, et al. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther, 2025, 10(1): 63. doi: 10.1038/s41392-024-02104-8. |
6. | Rous P, Larimore LD. Relation of the portal blood to liver maintenance : a demonstration of liver atrophy conditional on compensation. J Exp Med, 1920, 31(5): 609-632. |
7. | Kaur I, Juneja P, Tiwari R, et al. Secondary bile acids in portal blood contribute to liver regeneration in a rat model of partial hepatectomy. Am J Physiol Gastrointest Liver Physiol, 2024 . doi: 10.1152/ajpgi.00301.2023. |
8. | Xu H, Qiu X, Wang Z, et al. Role of the portal system in liver regeneration: from molecular mechanisms to clinical management. Liver Res, 2024, 8(1): 1-10. |
9. | Okamoto E, Toyosaka A, Yamanaka N, et al. The significance of hepatic lobectomy as the surgical treatment for primary hepatocellular carcinoma. Nihon Geka Gakkai Zasshi, 1983, 84(9): 908-912. |
10. | Makuuchi M, Takayasu K, Takuma T, et al. Preoperative transcatheter embolization of the portal venous branch for patients receiving extended lobectomy due to the bile duct carcinoma. J Jpn Soc Clin Surg, 1984, 45(12): 1558-1564. |
11. | Broering DC, Hillert C, Krupski G, et al. Portal vein embolization vs. portal vein ligation for induction of hypertrophy of the future liver remnant. J Gastrointest Surg, 2002, 6(6): 905-913. |
12. | Tashiro S. Mechanism of liver regeneration after liver resection and portal vein embolization (ligation) is different?. J Hepatobiliary Pancreat Surg, 2009, 16(3): 292-299. |
13. | Thien ND, Hai-Nam N, Anh DT, et al. Piezo1 and its inhibitors: overview and perspectives. Eur J Med Chem, 2024, 273: 116502. doi: 10.1016/j.ejmech.2024.116502. |
14. | Hu Y, Du G, Li C, et al. EGFR-mediated crosstalk between vascular endothelial cells and hepatocytes promotes Piezo1-dependent liver regeneration. Genes Dis, 2024, 12(3): 101321. doi: 10.1016/j.gendis.2024.101321. |
15. | Hwang S, Hicks A, Hoo CZ, et al. Novel treatment of acute and acute-on-chronic liver failure: interleukin-22. Liver Int, 2025, 45(3): e15619. doi: 10.1111/liv.15619. |
16. | Zhang T, Seeger P, Simsek Y, et al. IL-22 promotes liver regeneration after portal vein ligation. Heliyon, 2024, 10(6): e27578. doi: 10.1016/j.heliyon.2024.e27578. |
17. | Li B, Zhu Y, Xie L, et al. Portal vein ligation alters coding and noncoding gene expression in rat livers. Biochem Cell Biol, 2018, 96(1): 1-10. |
18. | Zhu Y, Li Z, Zhang J, et al. Identification of crucial lncRNAs and mRNAs in liver regeneration after portal vein ligation through weighted gene correlation network analysis. BMC Genomics, 2022, 23(1): 665. doi: 10.1186/s12864-022-08891-0. |
19. | Liu M, Zhu Y, Li Z, et al. Exosomes from liver progenitor cells carrying JAG1 activate notch signaling to promote liver regeneration in PVL rats. Cell Death Dis, 2025, 16(1): 609. doi: 10.1038/s41419-025-07925-1. |
20. | Brazovskaja A, Gomes T, Holtackers R, et al. Cell atlas of the regenerating human liver after portal vein embolization. Nat Commun, 2024, 15(1): 5827. doi: 10.1038/s41467-024-49236-7. |
21. | Chang X, Korenblik R, Olij B, et al. Influence of cholestasis on portal vein embolization-induced hypertrophy of the future liver remnant. Langenbecks Arch Surg, 2023, 408(1): 54. doi: 10.1007/s00423-023-02784-w. |
22. | Can E, Elkilany A, Paparoditis S, et al. Future liver remnant hypertrophy and postoperative outcomes: a retrospective comparison between segmental and main right portal vein embolization. CVIR Endovasc, 2025, 8(1): 27. doi: 10.1186/s42155-025-00537-y. |
23. | Li AY, Ahmad MU, Sofilos MC, et al. Postoperative hepatic insufficiency despite preoperative portal vein embolization: not just about the volumetrics. Surgery, 2025, 182: 109345. doi: 10.1016/j.surg.2025.109345. |
24. | Boubaddi M, Marichez A, Adam JP, et al. Comprehensive review of future liver remnant (FLR) assessment and hypertrophy techniques before major hepatectomy: how to assess and manage the FLR. Ann Surg Oncol, 2024, 31(13): 9205-9220. |
25. | Kjaergaard U, Lund A, Redda M, et al. Regional quantification of metabolic liver function using hyperpolarized [1-13C] pyruvate MRI. Sci Rep, 2025, 15(1): 10482. doi: 10.1038/s41598-025-93725-8. |
26. | Kuhn TN, Engelhardt WD, Kahl VH, et al. Artificial intelligence-driven patient selection for preoperative portal vein embolization for patients with colorectal cancer liver metastases. J Vasc Interv Radiol, 2025, 36(3): 477-488. |
27. | Lambotte L, Li B, Leclercq I, et al. The compensatory hyperplasia (liver regeneration) following ligation of a portal branch is initiated before the atrophy of the deprived lobes. J Hepatol, 2000, 32(6): 940-945. |
28. | Rassam F, Olthof PB, van Lienden KP, et al. Functional and volumetric assessment of liver segments after portal vein embolization: differences in hypertrophy response. Surgery, 2019, 165(4): 686-695. |
29. | 李斌, 姜小清. 在“计划性肝切除”的理念下审视联合肝脏分隔和门静脉结扎的二步肝切除术及门静脉栓塞. 临床外科杂志, 2017, 25(6): 414-416. |
30. | 袁磊, 罗贤武, 易滨, 等. 序贯性肝动脉化疗栓塞联合选择性门静脉栓塞在提高临界肝切除肝癌手术根治性中的应用研究. 中华肝胆外科杂志, 2017, 23(10): 649-654. |
31. | 李斌, 邱智泉, 刘辰, 等. 计划性肝切除在“中央型”肝内外胆管囊肿治疗中的应用. 中华肝胆外科杂志, 2017, 23(9): 619-623. |
32. | Li B, Li Z, Qiu Z, et al. Surgical treatment of hilar cholangiocarcinoma: retrospective analysis. BJS Open, 2023, 7(3): zrad024. doi: 10.1093/bjsopen/zrad024. |
33. | 李斌, 姜小清. 肝门部胆管癌根治术关键技术标准及评价. 中国实用外科杂志, 2024, 44(1): 55-60. |
34. | Luz JHM, Gomes FV, Coimbra E, et al. Preoperative portal vein embolization in hepatic surgery: a review about the embolic materials and their effects on liver regeneration and outcome. Radiol Res Pract, 2020, 2020: 9295852. doi: 10.1155/2020/9295852. |
35. | 袁磊, 吴英俊, 许贇, 等. 三丙烯酸酯明胶微球术前门静脉栓塞对照研究. 中华肝胆外科杂志, 2020, 26(3): 208-212. |
36. | 倪俊声, 李曜, 葛乃建, 等. ALPPS与采用不同栓塞材料PVE对肝再生及手术切除率影响研究. 中国实用外科杂志, 2021, 41(9): 1043-1048, 1055. |
37. | Olthof PB, Huisman F, Schaap FG, et al. Effect of obeticholic acid on liver regeneration following portal vein embolization in an experimental model. Br J Surg, 2017, 104(5): 590-599. |
38. | Gutiérrez Sáenz de Santa María J, Herrero de la Parte B, Gutiérrez-Sánchez G, et al. Folinic acid potentiates the liver regeneration process after selective portal vein ligation in rats. Cancers (Basel), 2022, 14(2): 371. doi: 10.3390/cancers14020371. |
39. | Ouyang H, Wei S, Gao B, et al. Delivery of synthetic interleukin-22 mRNA to hepatocytes via lipid nanoparticles alleviates liver injury. Small, 2024, 20(45): e2401499. doi: 10.1002/smll.202401499. |
40. | Shindoh J, Tzeng CW, Aloia TA, et al. Safety and efficacy of portal vein embolization before planned major or extended hepatectomy: an institutional experience of 358 patients. J Gastrointest Surg, 2014, 18(1): 45-51. |
41. | Hwang S, Lee SG, Ko GY, et al. Sequential preoperative ipsilateral hepatic vein embolization after portal vein embolization to induce further liver regeneration in patients with hepatobiliary malignancy. Ann Surg, 2009, 249(4): 608-616. |
42. | Hwang S, Ha TY, Ko GY, et al. Preoperative sequential portal and hepatic vein embolization in patients with hepatobiliary malignancy. World J Surg, 2015, 39(12): 2990-2998. |
43. | van Lienden KP, van den Esschert JW, Rietkerk M, et al. Short-term effects of combined hepatic vein embolization and portal vein embolization for the induction of liver regeneration in a rabbit model. J Vasc Interv Radiol, 2012, 23(7): 962-967. |
44. | Kawaguchi D, Hiroshima Y, Kumamoto T, et al. Effect of portal vein ligation plus venous congestion on liver regeneration in rats. Ann Hepatol, 2019, 18(1): 89-100. |
45. | Guiu B, Chevallier P, Denys A, et al. Simultaneous trans-hepatic portal and hepatic vein embolization before major hepatectomy: the liver venous deprivation technique. Eur Radiol, 2016, 26(12): 4259-4267. |
46. | Guiu B, Quenet F, Escal L, et al. Extended liver venous deprivation before major hepatectomy induces marked and very rapid increase in future liver remnant function. Eur Radiol, 2017, 27(8): 3343-3352. |
47. | Le Roy B, Perrey A, Fontarensky M, et al. Combined preoperative portal and hepatic vein embolization (biembolization) to improve liver regeneration before major liver resection: a preliminary report. World J Surg, 2017, 41(7): 1848-1856. |
48. | Laurent C, Fernandez B, Marichez A, et al. Radiological simultaneous portohepatic vein embolization (RASPE) before major hepatectomy: a better way to optimize liver hypertrophy compared to portal vein embolization. Ann Surg, 2020, 272(2): 199-205. |
49. | Deshayes E, Piron L, Bouvier A, et al. Study protocol of the HYPER-LIV01 trial: a multicenter phase Ⅱ, prospective and randomized study comparing simultaneous portal and hepatic vein embolization to portal vein embolization for hypertrophy of the future liver remnant before major hepatectomy for colo-rectal liver metastases. BMC Cancer, 2020, 20(1): 574. doi: 10.1186/s12885-020-07065-z. |
50. | Korenblik R, James S, Smits J, et al. Safety and efficacy of combined portal and hepatic vein embolisation in patients with colorectal liver metastases (DRAGON1): a multicentre, single-arm clinical trial. Lancet Reg Health Eur, 2025, 53: 101284. doi: 10.1016/j.lanepe.2025.101284. |
51. | Schnitzbauer AA, Lang SA, Goessmann H, et al. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann Surg, 2012, 255(3): 405-414. |
52. | Clavien PA, Lillemoe KD. Note from the editors on the ALPPS e-letters-to-the-editor. Ann Surg, 2012, 256(3): 552. doi: 10.1097/SLA.0b013e318266fa1f. |
53. | Moris D, Vernadakis S, Papalampros A, et al. Mechanistic insights of rapid liver regeneration after associating liver partition and portal vein ligation for stage hepatectomy. World J Gastroenterol, 2016, 22(33): 7613-7624. |
54. | Zhang S, Ma Y, Chen X, et al. Circulating proliferative factors versus portal inflow redistribution: mechanistic insights of ALPPS-derived rapid liver regeneration. Front Oncol, 2025, 14: 1429564. doi: 10.3389/fonc.2024.1429564. |
55. | Gavriilidis P, Marangoni G, Ahmad J, et al. Simultaneous portal and hepatic vein embolization is better than portal embolization or ALPPS for hypertrophy of future liver remnant before major hepatectomy: a systematic review and network meta-analysis. Hepatobiliary Pancreat Dis Int, 2023, 22(3): 221-227. |
56. | Bozkurt E, Sijberden JP, Kasai M, et al. Efficacy and perioperative safety of different future liver remnant modulation techniques: a systematic review and network meta-analysis. HPB (Oxford), 2024, 26(4): 465-475. |
57. | Budai A, Horváth G, Tretter L, et al. Mitochondrial function after associating liver partition and portal vein ligation for staged hepatectomy in an experimental model. Br J Surg, 2019, 106(1): 120-131. |
58. | Wu X, Rao J, Zhou X, et al. Partial ALPPS versus complete ALPPS for staged hepatectomy. BMC Gastroenterol, 2019, 19(1): 170. doi: 10.1186/s12876-019-1090-1. |
59. | Wang Q, Ji Y, Brismar TB, et al. Sequential portal vein embolization and percutaneous radiofrequency ablation for future liver remnant growth: a minimally invasive alternative to ALPPS stage-1 in treatment of hepatocellular carcinoma. Front Surg, 2021, 8: 741352. doi: 10.3389/fsurg.2021.741352. |
60. | Loke S, Ong BDC, Ng J, et al. Safety and efficacy of minimally invasive associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): a systematic review and meta-analysis. Int J Surg, 2025, 111(2): 2283-2290. |
61. | Linecker M, Pfister M, Kambakamba P, et al. Assessing surgical innovation. ALPPS: an IDEAL example of disruptive innovation. Ann Surg, 2025. doi: 10.1097/SLA.0000000000006865. |
62. | Line PD, Hagness M, Berstad AE, et al. A novel concept for partial liver transplantation in nonresectable colorectal liver metastases: the RAPID concept. Ann Surg, 2015, 262(1): e5-e9. |
63. | Königsrainer A, Templin S, Capobianco I, et al. Paradigm shift in the management of irresectable colorectal liver metastases: living donor auxiliary partial orthotopic liver transplantation in combination with two-stage hepatectomy (LD-RAPID). Ann Surg, 2019, 270(2): 327-332. |
64. | Settmacher U, Ali-Deeb A, Coubeau L, et al. Auxilliary liver transplantation according to the RAPID procedure in noncirrhotic patients: technical aspects and early outcomes. Ann Surg, 2023, 277(2): 305-312. |
65. | Coubeau L, Fontaine A, Ciccarelli O, et al. In-depth clinical, hemodynamic, and volumetric assessment of the resection and partial liver transplantation with delayed total hepatectomy-type auxiliary liver transplantation in noncirrhotic setting: are we simply dealing with a transplant model of associating liver partition and portal vein ligation for staged hepatectomy?. Ann Surg, 2024, 280(5): 753-762. |
66. | International Society of Liver Surgeons (ISLS). International consensus recommendations for the RAPID procedure in liver transplantation: the RAPID consensus ISLS 2023 Zurich collaborative. Int J Surg, 2025, 111(4): 2766-2772. |
67. | Peloso A, Pietrasz D, Daillier E, et al. Resection and partial liver transplantation from deceased donors with delayed total hepatectomy (RAPID procedure) for hepatocellular carcinoma: a national, multicenter, non-randomized, prospective trial. BMC Cancer, 2025, 25(1): 848. doi: 10.1186/s12885-025-14127-7. |
- 1. Ishikawa J, Takeo M, Iwadate A, et al. Mechanical homeostasis of liver sinusoid is involved in the initiation and termination of liver regeneration. Commun Biol, 2021, 4(1): 409. doi: 10.1038/s42003-021-01936-2.
- 2. Kim M, Park Y, Kim YS, et al. Cellular plasticity in gut and liver regeneration. Gut Liver, 2024, 18(6): 949-960.
- 3. Liu Q, Wang S, Fu J, et al. Liver regeneration after injury: mechanisms, cellular interactions and therapeutic innovations. Clin Transl Med, 2024, 14(8): e1812. doi: 10.1002/ctm2.1812.
- 4. Li Z, Sun X. Epigenetic regulation in liver regeneration. Life Sci, 2024, 353: 122924. doi: 10.1016/j.lfs.2024.122924.
- 5. Ma X, Huang T, Chen X, et al. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther, 2025, 10(1): 63. doi: 10.1038/s41392-024-02104-8.
- 6. Rous P, Larimore LD. Relation of the portal blood to liver maintenance : a demonstration of liver atrophy conditional on compensation. J Exp Med, 1920, 31(5): 609-632.
- 7. Kaur I, Juneja P, Tiwari R, et al. Secondary bile acids in portal blood contribute to liver regeneration in a rat model of partial hepatectomy. Am J Physiol Gastrointest Liver Physiol, 2024 . doi: 10.1152/ajpgi.00301.2023.
- 8. Xu H, Qiu X, Wang Z, et al. Role of the portal system in liver regeneration: from molecular mechanisms to clinical management. Liver Res, 2024, 8(1): 1-10.
- 9. Okamoto E, Toyosaka A, Yamanaka N, et al. The significance of hepatic lobectomy as the surgical treatment for primary hepatocellular carcinoma. Nihon Geka Gakkai Zasshi, 1983, 84(9): 908-912.
- 10. Makuuchi M, Takayasu K, Takuma T, et al. Preoperative transcatheter embolization of the portal venous branch for patients receiving extended lobectomy due to the bile duct carcinoma. J Jpn Soc Clin Surg, 1984, 45(12): 1558-1564.
- 11. Broering DC, Hillert C, Krupski G, et al. Portal vein embolization vs. portal vein ligation for induction of hypertrophy of the future liver remnant. J Gastrointest Surg, 2002, 6(6): 905-913.
- 12. Tashiro S. Mechanism of liver regeneration after liver resection and portal vein embolization (ligation) is different?. J Hepatobiliary Pancreat Surg, 2009, 16(3): 292-299.
- 13. Thien ND, Hai-Nam N, Anh DT, et al. Piezo1 and its inhibitors: overview and perspectives. Eur J Med Chem, 2024, 273: 116502. doi: 10.1016/j.ejmech.2024.116502.
- 14. Hu Y, Du G, Li C, et al. EGFR-mediated crosstalk between vascular endothelial cells and hepatocytes promotes Piezo1-dependent liver regeneration. Genes Dis, 2024, 12(3): 101321. doi: 10.1016/j.gendis.2024.101321.
- 15. Hwang S, Hicks A, Hoo CZ, et al. Novel treatment of acute and acute-on-chronic liver failure: interleukin-22. Liver Int, 2025, 45(3): e15619. doi: 10.1111/liv.15619.
- 16. Zhang T, Seeger P, Simsek Y, et al. IL-22 promotes liver regeneration after portal vein ligation. Heliyon, 2024, 10(6): e27578. doi: 10.1016/j.heliyon.2024.e27578.
- 17. Li B, Zhu Y, Xie L, et al. Portal vein ligation alters coding and noncoding gene expression in rat livers. Biochem Cell Biol, 2018, 96(1): 1-10.
- 18. Zhu Y, Li Z, Zhang J, et al. Identification of crucial lncRNAs and mRNAs in liver regeneration after portal vein ligation through weighted gene correlation network analysis. BMC Genomics, 2022, 23(1): 665. doi: 10.1186/s12864-022-08891-0.
- 19. Liu M, Zhu Y, Li Z, et al. Exosomes from liver progenitor cells carrying JAG1 activate notch signaling to promote liver regeneration in PVL rats. Cell Death Dis, 2025, 16(1): 609. doi: 10.1038/s41419-025-07925-1.
- 20. Brazovskaja A, Gomes T, Holtackers R, et al. Cell atlas of the regenerating human liver after portal vein embolization. Nat Commun, 2024, 15(1): 5827. doi: 10.1038/s41467-024-49236-7.
- 21. Chang X, Korenblik R, Olij B, et al. Influence of cholestasis on portal vein embolization-induced hypertrophy of the future liver remnant. Langenbecks Arch Surg, 2023, 408(1): 54. doi: 10.1007/s00423-023-02784-w.
- 22. Can E, Elkilany A, Paparoditis S, et al. Future liver remnant hypertrophy and postoperative outcomes: a retrospective comparison between segmental and main right portal vein embolization. CVIR Endovasc, 2025, 8(1): 27. doi: 10.1186/s42155-025-00537-y.
- 23. Li AY, Ahmad MU, Sofilos MC, et al. Postoperative hepatic insufficiency despite preoperative portal vein embolization: not just about the volumetrics. Surgery, 2025, 182: 109345. doi: 10.1016/j.surg.2025.109345.
- 24. Boubaddi M, Marichez A, Adam JP, et al. Comprehensive review of future liver remnant (FLR) assessment and hypertrophy techniques before major hepatectomy: how to assess and manage the FLR. Ann Surg Oncol, 2024, 31(13): 9205-9220.
- 25. Kjaergaard U, Lund A, Redda M, et al. Regional quantification of metabolic liver function using hyperpolarized [1-13C] pyruvate MRI. Sci Rep, 2025, 15(1): 10482. doi: 10.1038/s41598-025-93725-8.
- 26. Kuhn TN, Engelhardt WD, Kahl VH, et al. Artificial intelligence-driven patient selection for preoperative portal vein embolization for patients with colorectal cancer liver metastases. J Vasc Interv Radiol, 2025, 36(3): 477-488.
- 27. Lambotte L, Li B, Leclercq I, et al. The compensatory hyperplasia (liver regeneration) following ligation of a portal branch is initiated before the atrophy of the deprived lobes. J Hepatol, 2000, 32(6): 940-945.
- 28. Rassam F, Olthof PB, van Lienden KP, et al. Functional and volumetric assessment of liver segments after portal vein embolization: differences in hypertrophy response. Surgery, 2019, 165(4): 686-695.
- 29. 李斌, 姜小清. 在“计划性肝切除”的理念下审视联合肝脏分隔和门静脉结扎的二步肝切除术及门静脉栓塞. 临床外科杂志, 2017, 25(6): 414-416.
- 30. 袁磊, 罗贤武, 易滨, 等. 序贯性肝动脉化疗栓塞联合选择性门静脉栓塞在提高临界肝切除肝癌手术根治性中的应用研究. 中华肝胆外科杂志, 2017, 23(10): 649-654.
- 31. 李斌, 邱智泉, 刘辰, 等. 计划性肝切除在“中央型”肝内外胆管囊肿治疗中的应用. 中华肝胆外科杂志, 2017, 23(9): 619-623.
- 32. Li B, Li Z, Qiu Z, et al. Surgical treatment of hilar cholangiocarcinoma: retrospective analysis. BJS Open, 2023, 7(3): zrad024. doi: 10.1093/bjsopen/zrad024.
- 33. 李斌, 姜小清. 肝门部胆管癌根治术关键技术标准及评价. 中国实用外科杂志, 2024, 44(1): 55-60.
- 34. Luz JHM, Gomes FV, Coimbra E, et al. Preoperative portal vein embolization in hepatic surgery: a review about the embolic materials and their effects on liver regeneration and outcome. Radiol Res Pract, 2020, 2020: 9295852. doi: 10.1155/2020/9295852.
- 35. 袁磊, 吴英俊, 许贇, 等. 三丙烯酸酯明胶微球术前门静脉栓塞对照研究. 中华肝胆外科杂志, 2020, 26(3): 208-212.
- 36. 倪俊声, 李曜, 葛乃建, 等. ALPPS与采用不同栓塞材料PVE对肝再生及手术切除率影响研究. 中国实用外科杂志, 2021, 41(9): 1043-1048, 1055.
- 37. Olthof PB, Huisman F, Schaap FG, et al. Effect of obeticholic acid on liver regeneration following portal vein embolization in an experimental model. Br J Surg, 2017, 104(5): 590-599.
- 38. Gutiérrez Sáenz de Santa María J, Herrero de la Parte B, Gutiérrez-Sánchez G, et al. Folinic acid potentiates the liver regeneration process after selective portal vein ligation in rats. Cancers (Basel), 2022, 14(2): 371. doi: 10.3390/cancers14020371.
- 39. Ouyang H, Wei S, Gao B, et al. Delivery of synthetic interleukin-22 mRNA to hepatocytes via lipid nanoparticles alleviates liver injury. Small, 2024, 20(45): e2401499. doi: 10.1002/smll.202401499.
- 40. Shindoh J, Tzeng CW, Aloia TA, et al. Safety and efficacy of portal vein embolization before planned major or extended hepatectomy: an institutional experience of 358 patients. J Gastrointest Surg, 2014, 18(1): 45-51.
- 41. Hwang S, Lee SG, Ko GY, et al. Sequential preoperative ipsilateral hepatic vein embolization after portal vein embolization to induce further liver regeneration in patients with hepatobiliary malignancy. Ann Surg, 2009, 249(4): 608-616.
- 42. Hwang S, Ha TY, Ko GY, et al. Preoperative sequential portal and hepatic vein embolization in patients with hepatobiliary malignancy. World J Surg, 2015, 39(12): 2990-2998.
- 43. van Lienden KP, van den Esschert JW, Rietkerk M, et al. Short-term effects of combined hepatic vein embolization and portal vein embolization for the induction of liver regeneration in a rabbit model. J Vasc Interv Radiol, 2012, 23(7): 962-967.
- 44. Kawaguchi D, Hiroshima Y, Kumamoto T, et al. Effect of portal vein ligation plus venous congestion on liver regeneration in rats. Ann Hepatol, 2019, 18(1): 89-100.
- 45. Guiu B, Chevallier P, Denys A, et al. Simultaneous trans-hepatic portal and hepatic vein embolization before major hepatectomy: the liver venous deprivation technique. Eur Radiol, 2016, 26(12): 4259-4267.
- 46. Guiu B, Quenet F, Escal L, et al. Extended liver venous deprivation before major hepatectomy induces marked and very rapid increase in future liver remnant function. Eur Radiol, 2017, 27(8): 3343-3352.
- 47. Le Roy B, Perrey A, Fontarensky M, et al. Combined preoperative portal and hepatic vein embolization (biembolization) to improve liver regeneration before major liver resection: a preliminary report. World J Surg, 2017, 41(7): 1848-1856.
- 48. Laurent C, Fernandez B, Marichez A, et al. Radiological simultaneous portohepatic vein embolization (RASPE) before major hepatectomy: a better way to optimize liver hypertrophy compared to portal vein embolization. Ann Surg, 2020, 272(2): 199-205.
- 49. Deshayes E, Piron L, Bouvier A, et al. Study protocol of the HYPER-LIV01 trial: a multicenter phase Ⅱ, prospective and randomized study comparing simultaneous portal and hepatic vein embolization to portal vein embolization for hypertrophy of the future liver remnant before major hepatectomy for colo-rectal liver metastases. BMC Cancer, 2020, 20(1): 574. doi: 10.1186/s12885-020-07065-z.
- 50. Korenblik R, James S, Smits J, et al. Safety and efficacy of combined portal and hepatic vein embolisation in patients with colorectal liver metastases (DRAGON1): a multicentre, single-arm clinical trial. Lancet Reg Health Eur, 2025, 53: 101284. doi: 10.1016/j.lanepe.2025.101284.
- 51. Schnitzbauer AA, Lang SA, Goessmann H, et al. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann Surg, 2012, 255(3): 405-414.
- 52. Clavien PA, Lillemoe KD. Note from the editors on the ALPPS e-letters-to-the-editor. Ann Surg, 2012, 256(3): 552. doi: 10.1097/SLA.0b013e318266fa1f.
- 53. Moris D, Vernadakis S, Papalampros A, et al. Mechanistic insights of rapid liver regeneration after associating liver partition and portal vein ligation for stage hepatectomy. World J Gastroenterol, 2016, 22(33): 7613-7624.
- 54. Zhang S, Ma Y, Chen X, et al. Circulating proliferative factors versus portal inflow redistribution: mechanistic insights of ALPPS-derived rapid liver regeneration. Front Oncol, 2025, 14: 1429564. doi: 10.3389/fonc.2024.1429564.
- 55. Gavriilidis P, Marangoni G, Ahmad J, et al. Simultaneous portal and hepatic vein embolization is better than portal embolization or ALPPS for hypertrophy of future liver remnant before major hepatectomy: a systematic review and network meta-analysis. Hepatobiliary Pancreat Dis Int, 2023, 22(3): 221-227.
- 56. Bozkurt E, Sijberden JP, Kasai M, et al. Efficacy and perioperative safety of different future liver remnant modulation techniques: a systematic review and network meta-analysis. HPB (Oxford), 2024, 26(4): 465-475.
- 57. Budai A, Horváth G, Tretter L, et al. Mitochondrial function after associating liver partition and portal vein ligation for staged hepatectomy in an experimental model. Br J Surg, 2019, 106(1): 120-131.
- 58. Wu X, Rao J, Zhou X, et al. Partial ALPPS versus complete ALPPS for staged hepatectomy. BMC Gastroenterol, 2019, 19(1): 170. doi: 10.1186/s12876-019-1090-1.
- 59. Wang Q, Ji Y, Brismar TB, et al. Sequential portal vein embolization and percutaneous radiofrequency ablation for future liver remnant growth: a minimally invasive alternative to ALPPS stage-1 in treatment of hepatocellular carcinoma. Front Surg, 2021, 8: 741352. doi: 10.3389/fsurg.2021.741352.
- 60. Loke S, Ong BDC, Ng J, et al. Safety and efficacy of minimally invasive associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): a systematic review and meta-analysis. Int J Surg, 2025, 111(2): 2283-2290.
- 61. Linecker M, Pfister M, Kambakamba P, et al. Assessing surgical innovation. ALPPS: an IDEAL example of disruptive innovation. Ann Surg, 2025. doi: 10.1097/SLA.0000000000006865.
- 62. Line PD, Hagness M, Berstad AE, et al. A novel concept for partial liver transplantation in nonresectable colorectal liver metastases: the RAPID concept. Ann Surg, 2015, 262(1): e5-e9.
- 63. Königsrainer A, Templin S, Capobianco I, et al. Paradigm shift in the management of irresectable colorectal liver metastases: living donor auxiliary partial orthotopic liver transplantation in combination with two-stage hepatectomy (LD-RAPID). Ann Surg, 2019, 270(2): 327-332.
- 64. Settmacher U, Ali-Deeb A, Coubeau L, et al. Auxilliary liver transplantation according to the RAPID procedure in noncirrhotic patients: technical aspects and early outcomes. Ann Surg, 2023, 277(2): 305-312.
- 65. Coubeau L, Fontaine A, Ciccarelli O, et al. In-depth clinical, hemodynamic, and volumetric assessment of the resection and partial liver transplantation with delayed total hepatectomy-type auxiliary liver transplantation in noncirrhotic setting: are we simply dealing with a transplant model of associating liver partition and portal vein ligation for staged hepatectomy?. Ann Surg, 2024, 280(5): 753-762.
- 66. International Society of Liver Surgeons (ISLS). International consensus recommendations for the RAPID procedure in liver transplantation: the RAPID consensus ISLS 2023 Zurich collaborative. Int J Surg, 2025, 111(4): 2766-2772.
- 67. Peloso A, Pietrasz D, Daillier E, et al. Resection and partial liver transplantation from deceased donors with delayed total hepatectomy (RAPID procedure) for hepatocellular carcinoma: a national, multicenter, non-randomized, prospective trial. BMC Cancer, 2025, 25(1): 848. doi: 10.1186/s12885-025-14127-7.