1. |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446.
|
2. |
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology, 2016, 278(2): 563-577.
|
3. |
Volpe S, Mastroleo F, Krengli M, et al. Quo vadis radiomics. Bibliometric analysis of 10-year radiomics journey. Eur Radiol, 2023, 33(10): 6736-6745.
|
4. |
Pinto Dos Santos D, Dietzel M, Baessler B. A decade of radiomics research: are images really data or just patterns in the noise. Eur Radiol, 2021, 31(1): 1-4.
|
5. |
Pfaehler E, Zhovannik I, Wei L, et al. A systematic review and quality of reporting checklist for repeatability and reproducibility of radiomic features. Phys Imaging Radiat Oncol, 2021, 20: 69-75.
|
6. |
Huang EP, O'Connor JPB, McShane LM, et al. Criteria for the translation of radiomics into clinically useful tests. Nat Rev Clin Oncol, 2023, 20(2): 69-82.
|
7. |
Zhong J, Lu J, Zhang G, et al. An overview of meta-analyses on radiomics: more evidence is needed to support clinical translation. Insights Imaging, 2023, 14(1): 111.
|
8. |
Kocak B, Keles A, Kose F, et al. Quality of radiomics research: comprehensive analysis of 1574 unique publications from 89 reviews. Eur Radiol, 2025, 35(4): 1980-1992.
|
9. |
Barry N, Kendrick J, Molin K, et al. Evaluating the impact of the radiomics quality score: a systematic review and meta-analysis. Eur Radiol, 2025, 35(3): 1701-1713.
|
10. |
Park SH, Suh CH. Reporting guidelines for artificial intelligence studies in healthcare (for both conventional and large language models): what's new in 2024. Korean J Radiol, 2024, 25(8): 687-690.
|
11. |
Kocak B, Baessler B, Bakas S, et al. CheckList for EvaluAtion of Radiomics research (CLEAR): a step-by-step reporting guideline for authors and reviewers endorsed by ESR and EuSoMII. Insights Imaging, 2023, 14(1): 75.
|
12. |
Kocak B, Borgheresi A, Ponsiglione A, et al. Explanation and elaboration with examples for CLEAR (CLEAR-E3): an EuSoMII radiomics auditing group initiative. Eur Radiol Exp, 2024, 8(1): 72.
|
13. |
Mongan J, Moy L, Kahn CE. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell, 2020, 2(2): e200029.
|
14. |
Stahl AC, Tietz AS, Dewey M, et al. Has the quality of reporting improved since it became mandatory to use the standards for reporting diagnostic accuracy. Insights Imaging, 2023, 14(1): 85.
|
15. |
Zhong J, Xing Y, Lu J, et al. The endorsement of general and artificial intelligence reporting guidelines in radiological journals: a meta-research study. BMC Med Res Methodol, 2023, 23(1): 292.
|
16. |
Koçak B, Keleş A, Köse F. Meta-research on reporting guidelines for artificial intelligence: are authors and reviewers encouraged enough in radiology, nuclear medicine, and medical imaging journals. Diagn Interv Radiol, 2024, 30(5): 291-298.
|
17. |
Zhong J, Liu X, Lu J, et al. Overlooked and underpowered: a meta-research addressing sample size in radiomics prediction models for binary outcomes. Eur Radiol, 2025, 35(3): 1146-1156.
|
18. |
Riley RD, Snell KIE, Archer L, et al. Evaluation of clinical prediction models (part 3): calculating the sample size required for an external validation study. BMJ, 2024, 384: e074821.
|
19. |
Zhu L, Dong H, Sun J, et al. Robustness of radiomics among photon-counting detector CT and dual-energy CT systems: a texture phantom study. Eur Radiol, 2025, 35(2): 871-884.
|
20. |
Zhang H, Lu T, Wang L, et al. Robustness of radiomics within photon-counting detector CT: impact of acquisition and reconstruction factors. Eur Radiol, 2025, Epub ahead of print.
|
21. |
Kocak B, Yardimci AH, Nazli MA, et al. REliability of consensus-based segMentatIoN in raDiomic feature reproducibility (REMIND): a word of caution. Eur J Radiol, 2023, 165: 110893.
|
22. |
Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology, 2020, 295(2): 328-338.
|
23. |
Lei M, Varghese B, Hwang D, et al. Benchmarking various radiomic toolkit features while applying the image biomarker standardization initiative toward clinical translation of radiomic analysis. J Digit Imaging, 2021, 34(5): 1156-1170.
|
24. |
Bettinelli A, Marturano F, Avanzo M, et al. A novel benchmarking approach to assess the agreement among radiomic tools. Radiology, 2022, 303(3): 533-541.
|
25. |
Whybra P, Zwanenburg A, Andrearczyk V, et al. The image biomarker standardization initiative: standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology, 2024, 310(2): e231319.
|
26. |
Monti CB, Ambrogi F, Sardanelli F. Sample size calculation for data reliability and diagnostic performance: a go-to review. Eur Radiol Exp, 2024, 8(1): 79.
|
27. |
Marcus E, Teuwen J. Artificial intelligence and explanation: how, why, and when to explain black boxes. Eur J Radiol, 2024, 173: 111393.
|
28. |
Luo Z, Li J, Liao Y, et al. Prediction of response to preoperative neoadjuvant chemotherapy in extremity high-grade osteosarcoma using X-ray and multiparametric MRI radiomics. J Xray Sci Technol, 2023, 31(3): 611-626.
|
29. |
Bicego M, Mensi A. Null/no information rate (NIR): a statistical test to assess if a classification accuracy is significant for a given problem. 2023.
|
30. |
Collins GS, Moons KGM, Dhiman P, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ, 2024, 385: e078378.
|
31. |
Collins GS, Dhiman P, Andaur Navarro CL, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open, 2021, 11(7): e048008.
|
32. |
Jha AK, Bradshaw TJ, Buvat I, et al. Nuclear medicine and artificial intelligence: best practices for evaluation (the RELAINCE Guidelines). J Nucl Med, 2022, 63(9): 1288-1299.
|
33. |
Kocak B, Yardimci AH, Yuzkan S, et al. Transparency in artificial intelligence research: a systematic review of availability items related to open science in radiology and nuclear medicine. Acad Radiol, 2023, 30(10): 2254-2266.
|
34. |
Akinci D'Antonoli T, Cuocolo R, Baessler B, et al. Towards reproducible radiomics research: introduction of a database for radiomics studies. Eur Radiol, 2024, 34(1): 436-443.
|
35. |
Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 2017, 14(12): 749-762.
|
36. |
Kocak B, Akinci D'Antonoli T, Mercaldo N, et al. METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII. Insights Imaging, 2024, 15(1): 8.
|
37. |
Kocak B, Chepelev LL, Chu LC, et al. Assessment of RadiomIcS rEsearch (ARISE): a brief guide for authors, reviewers, and readers from the Scientific Editorial Board of European Radiology. Eur Radiol, 2023, 33(11): 7556-7560.
|
38. |
Liu Y, Wang Y, Hu X, et al. Multimodality deep learning radiomics predicts pathological response after neoadjuvant chemoradiotherapy for esophageal squamous cell carcinoma. Insights Imaging, 2024, 15(1): 277.
|
39. |
Wang Z, Zhu L, Liu S, et al. Development and validation of a CT-based radiomic nomogram for predicting surgical resection risk in patients with adhesive small bowel obstruction. BMC Med Imaging, 2025, 25(1): 46.
|
40. |
Tran K, Ginzburg D, Hong W, et al. Post-radiotherapy stage III/IV non-small cell lung cancer radiomics research: a systematic review and comparison of CLEAR and RQS frameworks. Eur Radiol, 2024, 34(10): 6527-6543.
|