1. |
全国中医标准化技术委员会(SAC/TC 478). 中医临床名词术语 第5部分: 骨伤科学: GB/T 42467.5-2023. 中国标准出版社, 2023: 12.
|
2. |
崔玉石, 吴红飞, 高云, 等. 由“髓减骨枯”与“微骨折”探讨骨质疏松症与膝骨关节炎的共病内涵. 中国骨质疏松杂志, 2024, 30(3): 391-395.
|
3. |
Liu CY, Duan YS, Zhou H, et al. Clinical effect and contributing factors of acupuncture for knee osteoarthritis: a systematic review and pairwise and exploratory network meta-analysis. BMJ Evid Based Med, 2024, 29(6): 374-384.
|
4. |
Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis, 2014, 73(7): 1323-1330.
|
5. |
吴红飞. KOA不同证候患者关节液TAOC、LPO浓度特点及其与证候程度相关性研究. 北京: 北京中医药大学, 2023.
|
6. |
Yamagata M, Kimura T, Chang AH, et al. Sex Differences in ambulatory biomechanics: a meta-analysis providing a mechanistic insight into knee osteoarthritis. Med Sci Sports Exerc, 2025, 57(1): 144-153.
|
7. |
Shahid A, Thirumaran AJ, Christensen R, et al. Comparison of weight loss interventions in overweight and obese adults with knee osteoarthritis: a systematic review and network meta-analysis of randomized trials. Osteoarthritis Cartilage, 2025, 33(4): 518-529.
|
8. |
Weng SE, Huang YW, Tseng YC, et al. The evolving landscape of sarcopenia in Asia: a systematic review and meta-analysis following the 2019 Asian Working Group for Sarcopenia (AWGS) diagnostic criteria. Arch Gerontol Geriatr, 2025, 128: 105596.
|
9. |
张姗姗, 刘航宇, 崔立敏, 等. 脆性骨折患者肌少症患病率及影响因素系统评价. 中华骨质疏松和骨矿盐疾病杂志, 2022, 15(4): 370-377.
|
10. |
Sekula P, Del Greco MF, Pattaro C, et al. Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol, 2016, 27(11): 3253-3265.
|
11. |
Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ, 2018, 362: k601.
|
12. |
彭洪俊, 曾羿. 肌肉减少症和骨关节炎相关性研究进展. 中国修复重建外科杂志, 2022, 36(12): 1549-1557.
|
13. |
刘明, 高亚, 杨珂璐, 等. 孟德尔随机化研究的报告规范(STROBE-MR)解读. 中国循证医学杂志, 2022, 22(8): 978-987.
|
14. |
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol, 2015, 44(2): 512-525.
|
15. |
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing, 2019, 48(1): 16-31.
|
16. |
徐婷, 袁名扬, 侯德仁. 多发性硬化与炎症性肠病的因果关联: 一项两样本双向孟德尔随机化研究. 中国循证医学杂志, 2024, 24(8): 893-898.
|
17. |
Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol, 2013, 178(7): 1177-1184.
|
18. |
Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet, 2017, 13(11): e1007081.
|
19. |
Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ, 2021, 375: n2233.
|
20. |
Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol, 2017, 46(6): 1985-1998.
|
21. |
Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR statement. JAMA, 2021, 326(16): 1614-1621.
|
22. |
Yang W, Yang Y, He L, et al. Dietary factors and risk for asthma: a Mendelian randomization analysis. Front Immunol, 2023, 14: 1126457.
|
23. |
Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet, 2018, 50(5): 693-698.
|
24. |
Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol, 2017, 32(5): 377-389.
|
25. |
Yan L, Ge H, Wang Z, et al. Roles of low muscle strength and sarcopenic obesity on incident symptomatic knee osteoarthritis: a longitudinal cohort study. PLoS One, 2024, 19(10): e0311423.
|
26. |
Wu Q, Xu Z, Ma X, et al. Association of low muscle mass index and sarcopenic obesity with knee osteoarthritis: a systematic review and meta-analysis. J Int Soc Sports Nutr, 2024, 21(1): 2352393.
|
27. |
Veronese N, Stefanac S, Koyanagi A, et al. Lower limb muscle strength and muscle mass are associated with incident symptomatic knee osteoarthritis: a longitudinal cohort study. Front Endocrinol (Lausanne), 2021, 12: 804560.
|
28. |
Jin WS, Choi EJ, Lee SY, et al. Relationships among obesity, sarcopenia, and osteoarthritis in the elderly. J Obes Metab Syndr, 2017, 26(1): 36-44.
|
29. |
Øiestad BE, Juhl CB, Culvenor AG, et al. Knee extensor muscle weakness is a risk factor for the development of knee osteoarthritis: an updated systematic review and meta-analysis including 46 819 men and women. Br J Sports Med, 2022, 56(6): 349-355.
|
30. |
Goodpaster BH, Park SW, Harris TB, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci, 2006, 61(10): 1059-1064.
|
31. |
张丽, 瓮长水. 全身振动训练在老年康复领域应用的研究进展. 中国康复理论与实践, 2015, 21(2): 163-167.
|
32. |
Kaji H. Effects of myokines on bone. Bonekey Rep, 2016, 5: 826.
|
33. |
Kirk B, Feehan J, Lombardi G, et al. Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep, 2020, 18(4): 388-400.
|
34. |
He Z, Li H, Han X, et al. Irisin inhibits osteocyte apoptosis by activating the Erk signaling pathway in vitro and attenuates ALCT-induced osteoarthritis in mice. Bone, 2020, 141: 115573.
|
35. |
Metzger CE, Anand Narayanan S, Phan PH, et al. Hindlimb unloading causes regional loading-dependent changes in osteocyte inflammatory cytokines that are modulated by exogenous irisin treatment. NPJ Microgravity, 2020, 6: 28.
|
36. |
Shang X, Hao X, Hou W, et al. Exercise-induced modulation of myokine irisin on muscle-bone unit in the rat model of post-traumatic osteoarthritis. J Orthop Surg Res, 2024, 19(1): 49.
|
37. |
Habiballa L, Salmonowicz H, Passos JF. Mitochondria and cellular senescence: implications for musculoskeletal ageing. Free Radic Biol Med, 2019, 132: 3-10.
|
38. |
Shen Y, Zhang Q, Huang Z, et al. Isoquercitrin delays denervated soleus muscle atrophy by inhibiting oxidative stress and inflammation. Front Physiol, 2020, 11: 988.
|
39. |
Chen Z, Zhong H, Wei J, et al. Inhibition of Nrf2/HO-1 signaling leads to increased activation of the NLRP3 inflammasome in osteoarthritis. Arthritis Res Ther, 2019, 21(1): 300.
|
40. |
Tchetverikov I, Lohmander LS, Verzijl N, et al. MMP protein and activity levels in synovial fluid from patients with joint injury, inflammatory arthritis, and osteoarthritis. Ann Rheum Dis, 2005, 64(5): 694-698.
|
41. |
Yu C, Xiao JH. The keap1-Nrf2 system: a mediator between oxidative stress and aging. Oxid Med Cell Longev, 2021, 2021: 6635460.
|
42. |
Ahn B, Pharaoh G, Premkumar P, et al. Nrf2 deficiency exacerbates age-related contractile dysfunction and loss of skeletal muscle mass. Redox Biol, 2018, 17: 47-58.
|
43. |
Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet, 2019, 393(10191): 2636-2646.
|
44. |
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing, 2019, 48(4): 601.
|
45. |
Yuan S, Larsson SC. Epidemiology of sarcopenia: prevalence, risk factors, and consequences. Metabolism, 2023, 144: 155533.
|
46. |
Liu C, Wong PY, Chung YL, et al. Deciphering the "obesity paradox" in the elderly: a systematic review and meta-analysis of sarcopenic obesity. Obes Rev, 2023, 24(2): e13534.
|