1. |
Pradeep Prabhu P, Mohanty B, Lobo CL, et al. Harnessing the nutriceutics in early-stage breast cancer: mechanisms, combinational therapy, and drug delivery. J Nanobiotechnology, 2024, 22(1): 574.
|
2. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
3. |
World Health Organization. Global cancer observatory (GcO): cancer today. 2020.
|
4. |
Beatson GT. On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment, with illustrative cases. Trans Med Chir Soc Edinb. 1896, 15: 153-179.
|
5. |
Gago-Dominguez M, Castelao JE. Role of lipid peroxidation and oxidative stress in the association between thyroid diseases and breast cancer. Crit Rev Oncol Hematol, 2008, 68(2): 107-114.
|
6. |
Smyth PP. The thyroid and breast cancer. Curr Opin Endocrinol Diabetes Obes, 2016, 23(5): 389-393.
|
7. |
Garner CN, Ganetzky R, Brainard J, et al. Increased prevalence of breast cancer among patients with thyroid and parathyroid disease. Surgery, 2007, 142(6): 806-813.
|
8. |
Van Fossen VL, Wilhelm SM, Eaton JL, et al. Association of thyroid, breast and renal cell cancer: a population-based study of the prevalence of second malignancies. Ann Surg Oncol, 2013, 20(4): 1341-1347.
|
9. |
Smyth PP. The thyroid and breast cancer: a significant association. Ann Med, 1997, 29(3): 189-191.
|
10. |
Chung WY, Chang HS, Kim EK, et al. Ultrasonographic mass screening for thyroid carcinoma: a study in women scheduled to undergo a breast examination. Surg Today, 2001, 31(9): 763-767.
|
11. |
Ma CY, Liang XY, Ran L, et al. Prevalence and risk factors of thyroid nodules in breast cancer women with different clinicopathological characteristics: a cross-sectional study. Clin Transl Oncol, 2024, 26(9): 2380-2387.
|
12. |
Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid, 2016, 26(1): 1-133.
|
13. |
Matti B, Cohen-Hallaleh R. Overview of the 2015 American Thyroid Association guidelines for managing thyroid nodules and differentiated thyroid cancer. N Z Med J. 2016, 129(1441): 78-86.
|
14. |
Mortensen JD, Woolner LB, Bennett WA. Gross and microscopic findings in clinically normal thyroid glands. J Clin Endocrinol Metab, 1955, 15(10): 1270-1280.
|
15. |
Birney E. Mendelian randomization. Cold Spring Harb Perspect Med, 2022, 12(4): a041302.
|
16. |
Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet, 2014, 23(R1): R89-98.
|
17. |
Yao S, Zhang M, Dong SS, et al. Bidirectional two-sample Mendelian randomization analysis identifies causal associations between relative carbohydrate intake and depression. Nat Hum Behav, 2022, 6(11): 1569-1576.
|
18. |
王丽娜, 张真. 孟德尔随机化方法在因果推断中的应用. 中华流行病学杂志, 2017, 38(4): 547-552.
|
19. |
Sekula P, Del Greco M F, Pattaro C, et al. Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol, 2016, 27(11): 3253-3265.
|
20. |
Huang W, Xiao J, Ji J, et al. Association of lipid-lowering drugs with COVID-19 outcomes from a Mendelian randomization study. Elife, 2021, 10: e73873.
|
21. |
Burgess S, Thompson SG; CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol, 2011, 40(3): 755-764.
|
22. |
Burgess S, Scott RA, Timpson NJ, et al. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol, 2015, 30(7): 543-552.
|
23. |
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol, 2015, 44(2): 512-525.
|
24. |
Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol, 2016, 40(4): 304-314.
|
25. |
Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol, 2017, 46(6): 1985-1998.
|
26. |
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol, 2015, 44(2): 512-525.
|
27. |
Chen J, Yuan S, Fu T, et al. Gastrointestinal consequences of type 2 diabetes mellitus and impaired glycemic homeostasis: a Mendelian randomization study. Diabetes Care, 2023, 46(4): 828-835.
|
28. |
Hemani G, Zheng J, Elsworth B, et al. The MR-base platform supports systematic causal inference across the human phenome. Elife, 2018, 7: e34408.
|
29. |
McVicker L, Cardwell CR, McIntosh SA, et al. Cancer-specific mortality in breast cancer patients with hypothyroidism: a UK population-based study. Breast Cancer Res Treat, 2022, 195(2): 209-221.
|
30. |
Peixoto MS, de Vasconcelos E Souza A, Andrade IS, et al. Hypothyroidism induces oxidative stress and DNA damage in breast. Endocr Relat Cancer, 2021, 28(7): 505-519.
|
31. |
Huang CH, Wei JC, Chien TC, et al. Risk of breast cancer in females with hypothyroidism: a nationwide, population-based, cohort study. Endocr Pract, 2021, 27(4): 298-305.
|
32. |
Mittra I, Hayward JL, McNeilly AS. Hypothalamic-pituitary-prolactin axis in breast cancer. Lancet, 1974, 1(7863): 889-891.
|
33. |
Smyth PP, Smith DF, McDermott EW, et al. A direct relationship between thyroid enlargement and breast cancer. J Clin Endocrinol Metab, 1996, 81(3): 937-941.
|
34. |
Tran TV, Kitahara CM, Leenhardt L, et al. The effect of thyroid dysfunction on breast cancer risk: an updated meta-analysis. Endocr Relat Cancer, 2022, 30(1): e220155.
|
35. |
Campennì A, Avram AM, Verburg FA, et al. The EANM guideline on radioiodine therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging, 2023, 50(11): 3324-3348.
|
36. |
Han M, Wang Y, Jin Y, et al. Benign thyroid disease and the risk of breast cancer: an updated systematic review and meta-analysis. Front Endocrinol (Lausanne), 2022, 13: 984593.
|
37. |
Sarlis NJ, Gourgiotis L, Pucino F, et al. Lack of association between Hashimoto thyroiditis and breast cancer: a quantitative research synthesis. Hormones (Athens), 2002, 1(1): 35-41.
|
38. |
Turken O, NarIn Y, DemIrbas S, et al. Breast cancer in association with thyroid disorders. Breast Cancer Res, 2003, 5(5): R110-113.
|
39. |
Smyth PP, Shering SG, Kilbane MT, et al. Serum thyroid peroxidase autoantibodies, thyroid volume, and outcome in breast carcinoma. J Clin Endocrinol Metab, 1998, 83(8): 2711-2716.
|
40. |
Park JW, Zhao L, Willingham M, et al. Oncogenic mutations of thyroid hormone receptor β. Oncotarget, 2015, 6(10): 8115-8131.
|
41. |
Rebaï M, Kallel I, Hamza F, et al. Association of EGFR and HER2 polymorphisms with risk and clinical features of thyroid cancer. Genet Test Mol Biomarkers, 2009, 13(6): 779-784.
|
42. |
Dinda S, Sanchez A, Moudgil V. Estrogen-like effects of thyroid hormone on the regulation of tumor suppressor proteins, p53 and retinoblastoma, in breast cancer cells. Oncogene, 2002, 21(5): 761-768.
|
43. |
Hall LC, Salazar EP, Kane SR, et al. Effects of thyroid hormones on human breast cancer cell proliferation. J Steroid Biochem Mol Biol, 2008, 109(1-2): 57-66.
|
44. |
Dong L, Lu J, Zhao B, et al. Review of the possible association between thyroid and breast carcinoma. World J Surg Oncol, 2018, 16(1): 130.
|
45. |
Hardefeldt PJ, Eslick GD, Edirimanne S. Benign thyroid disease is associated with breast cancer: a meta-analysis. Breast Cancer Res Treat, 2012, 133(3): 1169-1177.
|
46. |
García-Silva S, Aranda A. The thyroid hormone receptor is a suppressor of ras-mediated transcription, proliferation, and transformation. Mol Cell Biol, 2004, 24(17): 7514-7523.
|
47. |
Conde I, Paniagua R, Zamora J, et al. Influence of thyroid hormone receptors on breast cancer cell proliferation. Ann Oncol, 2006, 17(1): 60-64.
|
48. |
Søgaard M, Farkas DK, Ehrenstein V, et al. Hypothyroidism and hyperthyroidism and breast cancer risk: a nationwide cohort study. Eur J Endocrinol, 2016, 174(4): 409-414.
|
49. |
Tosovic A, Becker C, Bondeson AG, et al. Prospectively measured thyroid hormones and thyroid peroxidase antibodies in relation to breast cancer risk. Int J Cancer, 2012, 131(9): 2126-2133.
|
50. |
Pang XP, Yoshimura M, Hershman JM. Suppression of rat thyrotroph and thyroid cell function by tumor necrosis factor-alpha. Thyroid, 1993, 3(4): 325-330.
|
51. |
Poth M, Tseng YC, Wartofsky L. Inhibition of TSH activation of human cultured thyroid cells by tumor necrosis factor: an explanation for decreased thyroid function in systemic illness. Thyroid, 1991, 1(3): 235-240.
|
52. |
Lin Z, Deng Y, Pan W. Combining the strengths of inverse-variance weighting and Egger regression in Mendelian randomization using a mixture of regressions model. PLoS Genet, 2021, 17(11): e1009922.
|
53. |
Fang Y, Yao L, Sun J, et al. Does thyroid dysfunction increase the risk of breast cancer. A systematic review and meta-analysis. J Endocrinol Invest, 2017, 40(10): 1035-1047.
|
54. |
Piccardo A, Fiz F, Bottoni G, et al. The FDG pattern of autonomously functioning thyroid nodules correlates with thyroid-stimulating hormone and histopathology. Clin Nucl Med, 2023, 48(2): 119-125.
|