1. |
Rusz CM, Ősz BE, Jîtcă G, et al. Off-label medication: from a simple concept to complex practical aspects. Int J Environ Res Public Health, 2021, 18(19): 10447.
|
2. |
Meng M, Zhou Q, Lei W, et al. Recommendations on off-label drug use in pediatric guidelines. Front Pharmacol, 2022, 13: 892574.
|
3. |
Schrier L, Hadjipanayis A, Stiris T, et al. Off-label use of medicines in neonates, infants, children, and adolescents: a joint policy statement by the European Academy of Paediatrics and the European society for Developmental Perinatal and Pediatric Pharmacology. Eur J Pediatr, 2020, 179(5): 839-847.
|
4. |
Ngcobo NN, Mathibe LJ. Off-label use of medicines in South Africa: a review. Orphanet J Rare Dis, 2024, 19(1): 448.
|
5. |
Jaberi E, Boussaha I, Dode X, et al. Unlicensed/off-label drug prescriptions at hospital discharge in children: an observational study using routinely collected health data. Healthcare (Basel), 2024, 12(2): 208.
|
6. |
Kianian R, Sun D, Rojas-Carabali W, et al. Large language models may help patients understand peer-reviewed scientific articles about ophthalmology: development and usability study. J Med Internet Res, 2024, 26: e59843.
|
7. |
Lehman K, Aroney E. A guided framework for assessing off-label medication use in psychiatry. Australas Psychiatry, 2024, 32(1): 63-67.
|
8. |
邱凯锋, 何志超, 陈泽鹏, 等. 《超说明书用药循证评价规范》团体标准解读. 今日药学, 2021, 31(11): 811-814.
|
9. |
邱凯锋, 王则远, 何志超, 等. 人工智能技术在超说明书用药循证中的应用研究. 中华临床医师杂志(电子版), 2023, 17(12): 1212-1218.
|
10. |
Han JY. Usefulness and limitations of ChatGPT in getting information on teratogenic drugs exposed in pregnancy. Obstet Gynecol Sci, 2025, 68(1): 1-8.
|
11. |
Hedley PL, Hagen CM, Wilstrup C, et al. The use of artificial intelligence and machine learning methods in early pregnancy pre-eclampsia screening: a systematic review protocol. PLoS One, 2023, 18(4): e0272465.
|
12. |
Matalon J, Spurzem A, Ahsan S, et al. Reader's digest version of scientific writing: comparative evaluation of summarization capacity between large language models and medical students in analyzing scientific writing in sleep medicine. Front Artif Intell, 2024, 7: 1477535.
|
13. |
Gu Z, Jia W, Piccardi M, et al. Empowering large language models for automated clinical assessment with generation-augmented retrieval and hierarchical chain-of-thought. Artif Intell Med, 2025, 162: 103078.
|
14. |
Patel SB, Lam K. ChatGPT: the future of discharge summaries. Lancet Digit Health, 2023, 5(3): e107-e108.
|
15. |
Lai H, Ge L, Sun M, et al. Assessing the risk of bias in randomized clinical trials with large language models. JAMA Netw Open, 2024, 7(5): e2412687.
|
16. |
Pitre T, Jassal T, Talukdar JR, et al. ChatGPT for assessing risk of bias of randomized trials using the RoB 2.0 tool: a methods study. 2023.
|
17. |
Roberts RH, Ali SR, Hutchings HA, et al. Comparative study of ChatGPT and human evaluators on the assessment of medical literature according to recognised reporting standards. BMJ Health Care Inform, 2023, 30(1): e100830.
|
18. |
Wan X, Wang R, Zhao J, et al. From manual to machine: revolutionizing day surgery guideline and consensus quality assessment with large language models. J Evid Based Med, 2025, 18(1): e70017.
|
19. |
Ravani P, Colucci M, Bruschi M, et al. Human or chimeric monoclonal anti-CD20 antibodies for children with nephrotic syndrome: a superiority randomized trial. J Am Soc Nephrol, 2021, 32(10): 2652-2663.
|
20. |
Amrane K, Geier M, Corre R, et al. First-line pembrolizumab for non-small cell lung cancer patients with PD-L1 ≥50% in a multicenter real-life cohort: the PEMBREIZH study. Cancer Med, 2020, 9(7): 2309-2316.
|
21. |
Zhu Y, Chen J, Zhang Y, et al. Immunosuppressive agents for frequently relapsing/steroid-dependent nephrotic syndrome in children: a systematic review and network meta-analysis. Front Immunol, 2024, 15: 1310032.
|
22. |
Yang B, Wang B, Chen Y, et al. Effectiveness and safety of pembrolizumab for patients with advanced non-small cell lung cancer in real-world studies and randomized controlled trials: a systematic review and meta-analysis. Front Oncol, 2023, 13: 1044327.
|
23. |
Lv J, Liu L, Hao C, et al. Randomized phase 2 trial of telitacicept in patients with IgA nephropathy with persistent proteinuria. Kidney Int Rep, 2022, 8(3): 499-506.
|
24. |
Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary. Control Clin Trials, 1996, 17(1): 1-12.
|
25. |
Slim K, Nini E, Forestier D, et al. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg, 2003, 73(9): 712-716.
|
26. |
Makar J, Abdelmalak J, Con D, et al. Use of artificial intelligence improves colonoscopy performance in adenoma detection: a systematic review and meta-analysis. Gastrointest Endosc, 2025, 101(1): 68-81.
|
27. |
Zong H, Wu R, Cha J, et al. Advancing Chinese biomedical text mining with community challenges. J Biomed Inform, 2024, 157: 104716.
|
28. |
Woelfle T, Hirt J, Janiaud P, et al. Benchmarking Human-AI collaboration for common evidence appraisal tools. J Clin Epidemiol, 2024, 175: 111533.
|