Objective By using metagenomic next-generation sequencing (mNGS), we aimed to analyze the microbes characteristics of lower respiratory tract of patients with pulmonary infection, so as to improve the further understanding of clinical etiological characteristics of patients with pulmonary infection. Methods A total of 840 patients with suspected pulmonary infection were enrolled from August 2020 to October 2021 in West China Hospital of Sichuan University. mNGS was used to detect the microbiome of bronchoalveolar lavage fluid of all patients, and the microbial characteristics of lower respiratory tract of all patients were retrospectively analyzed. Results A total of 840 patients were enrolled, of which 743 were positive for microbiome, with bacterial infection accounting for 35.13% (261/743). Acinetobacter baumannii accounted for 18.98% (141/743), followed by Streptococcus pneumoniae (14.13%, 105/743), Klebsiella pneumoniae (13.46%, 100/743), Enterococcus faecium (12.11%, 90/743) and Mycobacterium tuberculosis complex (11.98%, 89/743). Acinetobacter baumannii had the highest average reads (2607.48). In addition, some specific pathogens were detected, such as 9 cases of Chlamydia psittaci. The main fungal infections were Candida albicans (12.38%, 92/743), Pneumocystis jirovecii (9.02%, 67/743) and Aspergillus fumigatus (7.40%, 55/743), among which the average reads of Pneumocystis jirovecii was higher (141.86) than Candida albicans and Aspergillus fumigatus. In addition, some special pathogens were also detected, such as a case of Talaromyces marneffei. The main viral infections included human β herpevirus 5 (17.90%, 133/743), human γ herpevirus 4 (17.36%, 129/743), human β herpevirus 7 (16.15%, 120/743) and human α herpevirus 1 (13.59%, 101/743), among which the average reads of human herpesvirus type 1 (367.27) was the highest. Parasitic infection was least, with only 2 cases of Echinococcus multilocularis, 2 cases of Angiostrongylus cantonensis, 2 cases of Dermatophagoides pteronyssinus and 1 case of Dermatophagoides farinae, which were mainly infected with bacteria and viruses. In addition, a total of 407 patients were diagnosed with mixed infection, of which virus and bacteria mixed infection was the most (22.61%, 168/743). The distribution of microorganisms in different seasons also has certain characteristics. For example, bacteria (Acinetobacter baumannii) were most frequently detected in autumn and winter, while viruses (human gamma-herpesvirus type 4) were most frequently detected in spring and summer. Conclusions In the lower respiratory tract of patients with pulmonary infection, the main gram-negative bacteria are Acinetobacter baumannii and Klebsiella pneumoniae, while the main gram-positive bacteria are Streptococcus pneumoniae, Enterococcus faecium and Mycobacterium tuberculosis complex; the main fungi are Candida albicans, Pneumocystis jirovecii and Aspergillus fumigatus; the main viruses are human β herpevirus 5, human γ herpevirus 4 and human β herpevirus 7. However, parasites are rarely detected and have no obvious characteristics. Bacterial infection and bacterial virus mixed infection are the main co-infections; the microbial characteristics of autumn and winter are different from those of spring and summer. In addition, attention should be paid to special pathogenic microorganisms, such as Chlamydia psittaci and Talaromyces marneffei. These characteristics could be used as reference and basis for the pathogenic diagnosis of pulmonary infection.
Objective To analyze the difference of sputum flora between acute exacerbation and stable chronic obstructive pulmonary disease (COPD) patients basing on metagenomic next generation sequencing (mNGS), and its relationship with clinical indicators. The role of sputum flora of COPD patients in unexplained deterioration was explored, so as to find a targeted treatment plan. Methods From December 2021 to June 2022, 54 COPD patients who had a history of smoking were recruited, including 25 patients in stable COPD (SCOPD group) and 29 patients in acute exacerbation (AECOPD group). The sputum was collected and sequenced by mNGS, and the difference of sputum flora between the two groups was compared. Results Compared with SCOPD group, the evenness of sputum flora (Shannon index) in AECOPD group decreased significantly (P=0.019, Mann-Whitney U test). At the phylum level, the relative abundance of Fusobacteria in AECOPD group was significantly lower than that in SCOPD group (Z=–2.669, P=0.008). At genus level, compared with SCOPD group, the relative abundance of Fusobacterium and Haemophilus in AECOPD group decreased significantly (Z=–3.062, P=0.002; Z=–2.143, P=0.032), and the relative abundance of Granulicatella increased significantly (Z=–2.186, P=0.029). At species level, the relative abundance of sputum Haemophilus parainfluenzae, Moraxella catarrhalis and Haemophilus influenzae in AECOPD group was significantly lower than that in SCOPD group (Z=–2.230, P=0.026; Z=–2.125, P=0.034; Z=–2.099, P=0.036). At the time of acute exacerbation of COPD, the relative abundance of Gemella in sputum was positively correlated with forced expiratory volume in first second/forced vital capacity (FEV1/FVC) and body mass index (r=0.476, P=0.009; r=0.427, P=0.021), which was negatively correlated with nutrition risk screening 2002 (r=–0.570, P=0.001). The relative abundance of Neisseria and Neisseria subflava was negatively correlated with GOLD grade (r=–0.428, P=0.020; r=–0.455, P=0.013). The relative abundance of Rothia aeria was posotively correlated with C-reactive peotein (r=0.388, P=0.038). Conclusions There are significant differences of sputum flora in phylum, genus and species level between stable and acute exacerbation COPD patients. The evenness of sputum flora in COPD patients in acute exacerbation is significantly lower than that in patients in stable stage. Fusobacteria, Fusobacterium, Gemella and Nesseria (Neisseria subflava) may play a beneficial role in COPD, while Rothia aeria may be associated with COPD exacerbation.
ObjectiveTo explore the clinical value of next-generation sequencing (NGS) in the diagnosis of Pneumocystis jirovecii pneumonia (PCP).MethodsTwo patients with Pneumocystis jirovecii pneumonia after lung transplantation were detected by NGS in the sputum and bronchoalveolar lavage fluid. The clinical data, imaging features, laboratory examination and treatment of the two patients were reported. A systematic literature review was performed for similar published cases in PubMed database, using the keywords "lung transplantation/solid organ transplantation" and "Pneumocystis jirovecii".ResultsThere were six references based on the keywords of "lung transplantation " and " Pneumocystis jirovecii ", of which three were case report. Sixty-six lung transplant patients were complicated with Pneumocystis jirovecii in total. The clinical manifestations of Pneumocystis jirovecii pneumonia were fever and dyspnea of different degrees. The diffuse "ground glass" infiltration could be shown on imaging. Computer tomography scan of chest was a sensitive method to detect PCP. Combined immunofluorescence microscope/PCR/serum 3-β-D-glucan could effectively improve the accuracy of microbiology detection. In addition, NGS could quickly and accurately identify pathogenic bacteria, give guidance for treatment and improve prognosis so as to benefit patients well. Trimethoprim/sulfamethoxazole (TMP/SMZ) was the preferred choice for the treatment of PCP patients.ConclusionsPneumocystis jirovecii pneumonia is more common in patients with immunodeficiency or immunosuppression. NGS can help rapid and accurate diagnosis, and the treatment should be early and sufficient.
ObjectiveTo improve the understanding of psittacosis, the clinical data of 8 cases are reviewed. The application of pathogen metagenomics next-generation sequencing (mNGS) in the diagnosis of nocardiosis is also investigated.MethodsThe clinical data of eight patients with psittacosis diagnosed by mNGS in Nanjing Drum Tower Hospital from January 2018 to May 2020 were reviewed. The clinical characteristics, laboratory examination characteristics and imaging changes were analyzed, and the treatment outcome was followed-up.ResultsAmong the eight cases, there were six males and two females, aged 43~83 years old, with an average age of 64±12 years old. Six of them had a clear history of poultry exposure. The major clinical manifestations were fever, cough, dyspnea, etc. Chest high-resolution computed tomography (HRCT) may have solid shadow, ground glass like shadow. Chlamydia psittaci was detected by mNGS in eight patients’ bronchoalveolar lavage fluid. Minocycline or moxifloxacin were administrated, six patients were discharged after their condition improved, and two patients died.ConclusionsThe incidence of psittacosis is low, and its clinical manifestations lack specificity. In the course of the disease, there may be different degrees of fever, cough, sputum, dyspnea and other symptoms. The lungs can be heard with wet rales, chest HRCT can be seen ground glass shadow, consolidation shadow, accompanied by air bronchogram. Chlamydia psittaci can be detected in alveolar lavage fluid by mNGS. The patients need to be treated for a long time, lasting at least 10 to 14 days. Tetracycline drugs should be the first choice, and can be combined with other antibiotics with activity against gram-positive and gram-negative bacteria in critical patients.
In recent years, due to the extensive usage of immunosuppressant and the rise of patients with cancers and organ transplantation, the incidence rate of invasive fungal infection, especially invasive pulmonary fungal infection, has increased. Besides the clinical manifestations, medical history and imaging, the diagnosis of pulmonary mycosis mainly depends on pathogen detection methods in clinical microbiology laboratory. However, due to the difficulty in fungi culturing and the low sensitivity of smear microscopy, better molecular biology methods are needed. To date, the emergence of metagenomic next-generation sequencing (mNGS) has improved the identification rate of pulmonary fungal infections. mNGS is significantly superior to traditional detection methods in rapid, accurate, and comprehensive determination of fungi from various clinical specimens, especially atypical fungi. However, some problems in mNGS method have to be addressed including sample collection, report interpretation, and its combination with traditional microbiology methods. With the in-depth discussion and solution of the above problems, mNGS will be indispensable to the etiological diagnosis of pulmonary invasive fungal infection.
Objective To explore the clinical characteristics of Chlamydia psittaci pneumonia. Methods From January 2020 to March 2023, 21 cases of Psittacosis from the First Affiliated Hospital of Nanjing Medical University were diagnosed via metagenomic next-generation sequencing (mNGS). They were divided into a severe group (n=10) and a non-severe group (n=11) based on diagnostic criteria for severe pneumonia, and the clinical presentation, secondary examination, treatment, and prognosis of the two groups were analyzed retrospectively. Results Among the 21 patients, there were 11 males and 10 females, with a mean age of (51.7±11.6) years. All patients had an acute onset and 12 had a confirmed history of exposure to poultry. The onset of the disease occurred in the autumn and winter seasons in 18 patients. All the patients were suffering from high fevers. Other symptoms included coughing, phlegm, tightness in the chest and fatigue. Laboratory examinations showed that the levels of leukocytes, neutrophil counts, C-reactive protein, procalcitonin, aminotransferase, creatine kinase, lactic dehydrogenase, brain natriuretic peptide precursors and D-dimer were significantly higher in the severe group than those in the non-severe group. Chest CT scans revealed varying levels of consolidation and spot shadowing with peripheral exudate in all patients. The patients in the severe group were more likely to have bilateral lung involvement, bilateral pleural effusion, cavity and mediastinal lymph node enlargement. Eleven patients received tetracycline alone, three received laudanum alone, two received respiratory quinolones alone, and five received a combination of two drugs including tetracycline. Chest CT at clinical follow-up showed absorption of lung lesions. Conclusions Chlamydia psittaci pneumonia usually occurs in the fall and winter, and most patients have a history of contact with poultry. Clinical presentation and imaging are not specified. The technology of mNGS enables early diagnosis of the disease, and neutrophil lymphocyte ratio, neutrophil-lymphocyte ratio and lactic dehydrogenase levels help assess the risk of severe disease.
ObjectiveTo explore the clinical value of metagenomic next-generation sequencing (mNGS) in diagnosis and treatment of periprosthetic joint infection (PJI) after total knee arthroplasty (TKA). MethodsBetween April 2020 and March 2023, 10 patients with PJI after TKA were admitted. There were 3 males and 7 females with an average age of 69.9 years (range, 44-83 years). Infection occurred after 8-35 months of TKA (mean, 19.5 months). The duration of infection ranged from 16 to 128 days (mean, 37 days). The preoperative erythrocyte sedimentation rate (ESR) was 15-85 mm/1 h (mean, 50.2 mm/1 h). The C reactive protein (CRP) was 4.4-410.0 mg/L (mean, 192.8 mg/L). The white blood cell counting was (3.4-23.8)×109/L (mean, 12.3×109/L). The absolute value of neutrophils was (1.1-22.5)×109/L (mean, 9.2×109/L). After admission, the joint fluid was extracted for bacterial culture method and mNGS test, and sensitive antibiotics were chosen according to the results of the test, and the infection was controlled in combination with surgery. Results Seven cases (70%) were detected as positive by bacterial culture method, and 7 types of pathogenic bacteria were detected; the most common pathogenic bacterium was Streptococcus lactis arrestans. Ten cases (100%) were detected as positive by mNGS test, and 11 types of pathogenic bacteria were detected; the most common pathogenic bacterium was Propionibacterium acnes. The difference in the positive rate between the two methods was significant (P=0.211). Three of the 7 patients who were positive for both the bacterial culture method and the mNGS test had the same results for the type of pathogenic bacteria, with a compliance rate of 42.86% (3/7). The testing time (from sample delivery to results) was (4.95±2.14) days for bacterial culture method and (1.60±0.52) days for mNGS test, and the difference was significant (t=4.810, P<0.001). The corresponding sensitive antibiotic treatment was chosen according to the results of bacterial culture method and mNGS test. At 3 days after the one-stage operation, the CRP was 6.8-48.2 mg/L (mean, 23.6 mg/L); the ESR was 17-53 mm/1 h (mean, 35.5 mm/1 h); the white blood cell counting was (4.5-8.1)×109/L (mean, 6.1×109/L); the absolute value of neutrophils was (2.3-5.7)×109/L (mean, 4.1×109/L). All patients were followed up 12-39 months (mean, 23.5 months). One case had recurrence of infection at 6 months after operation, and the remaining 9 cases showed no signs of infection, with an infection control rate of 90%. Conclusion Compared with bacterial culture method, mNGS test can more rapidly and accurately detect pathogenic bacteria for PJI after TKA, which is important for guiding antibiotics combined with surgical treatment of PJI.
ObjectiveTo study the application of non-real-time ultrasound bronchoscopy combined with Metagenomic Next-Generation Sequencing (mNGS) for diagnosis in focal pulmonary infectious diseases. MethodsProspective inclusion of patients with focal pulmonary infection were randomly divided into two groups, the experimental group used non-real-time ultrasound bronchoscopy positioning to collect bronchial alveolar lavage fluid (BALF), while the control group used chest CT position. BALF was subjected to mNGS and traditional microbial detection including traditional culture, the fungal GM test and Xpert (MTB/RIF). ResultThe positive rate of traditional culture (39.58% vs. 16.67%, P=0.013) and mNGS (89.58% vs. 72.92%, P=0.036) in experimental group was higher. The positive rate of Xpert MTB/RIF (4.17% vs. 2.08%, P=1) and fungal GM test (6.25% vs. 4.17%, P=0.765) was similar. The positive rate of bacteria and fungi detected by mNGS was higher than traditional culture (61.46% vs. 28.13%, P<0.001). Mycobacterium tuberculosis was similar to Xpert MTB/RIF (8.33% vs. 3.13%, P=0.21). Aspergillus was similar to GM test (7.29% vs. 5.21%, P=0.77). The total positive rate of traditional microbial methods was 36.46%, but 81.25% in mNGS (P<0.001). mNGS showed that 35 cases were positive and 13 kinds of pathogens were detected in control group, but 43 patients and 17 kinds of pathogens were detected in experimental group. The average hospitalization time [(12.92±3.54) days vs. (16.35±7.49) days] and the cost [CNY (12209.17±3956.17) vs. CNY (19044.10±17350.85)] of experimental group was less (P<0.001). ConclusionsNon-real-time ultrasound bronchoscopy combined with mNGS can improve the diagnostic rate of focal pulmonary infectious diseases which is worthy of popularization and application in clinical practice.