west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "人工骨" 34 results
  • EXPERIMENTAL STUDY ON EFFECT OF PLATELET-RICH PLASMA IN REPAIR OF BONE DEFECT

    OBJECTIVE: To study the effect of platelet-rich plasma in the repair of bone defect. METHODS: Segmental bone defects of 1 cm were created in the mid-upper part of bilateral radius of 24 New Zealand white rabbits. One side was randomly chosen as the experimental side, which was filled with artificial bone with platelet-rich plasma (PRP). The other side filled with artificial bone without PRP as the control. After 2, 4, 8 and 12 weeks of implantation, the gross, radiological, histological observations, and computer graphic analysis were performed to investigate the bone healing of the defect in both sides. RESULTS: Two weeks after operation, new bone and fibrous tissue formation in both the experimental and the control sides were observed only in the areas adjacent to the cut ends of the host bone, but the amount of new tissue in the experimental side was much more than that in the control side. In the 4th and 8th weeks, the surface of the artificial bone was covered with a large amount of new bones, the artificial bone was bridged tightly with the host bone by callus in the experimental side, while new bone was limited mainly in the cut ends and was less mature in the control side. In the 12th weeks, bone defects were entirely healed in the experimental side, which were covered completely with cortical bone, while new bone formation was only observed in the ends of artificial bone and there were not continuous bone callus on the surface in the control side. CONCLUSION: Artificial bone with PRP is effective in the repair of segmental bone defects, and PRP could improve the healing of bone defect.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • BLOCK MROXYAPATITE ARTIFICIALBONE USED IN PLASTIC REPAIR OFMAXILLOFACIAL REGION:A PRELIMIN-ARY REPORT

    The primary results of five patients in whomthe block hydroxyapatite artificial bone (BHAB)used in maxillofacial plastic repair were reported. All incisions healed up with no evidence ofinfection. None of the implants was rejected norhad resorption changes. Satisfactory estheticaleffects were maintained. The results demonst-rated BHAB had a good biocampatibility andcould be used as a bone graft substitute inmaxillofacial plastic repair. This kind of material could be carved and contoured ...

    Release date:2016-09-01 11:17 Export PDF Favorites Scan
  • A QUANTITATIVE ANALYSIS OF BONE FORMATION AFTER IMPLANTATION OF THE BOVINE HYDROXYAPATITE BIO OSS TOGETHER WITH FREE PERIOSTEUM IN RABBIT MUSCLE

    Abstract To investigate the ectopic new bone formation following implantation of bovine hydroxyapatite Bio-oss together with free periosteum, 12 chabb: ch rabbits were selected. In 10 rabbits, Bio-oss block together with free periosteum was implanted in the gastrocnemius muscle of one leg randomly, and Bio-oss block alone was implanted in the same muscle of the other leg. In the other 2 rabbits, the periosteum was implanted into the gastrocnemius musle of both legs. Histologic examination and quantitative analysis of newbone formation were performed at 3 and 6 weeks postoperatively. The results showed that in the legs implanted bovine hydroxyapatite Bio-oss together with freeperiosteum, new bone formation began at 5th day after implantation. The area ofnew bone composed of 19.0% of the specimens at 3 weeks postoperatively. No boneformation through out the experimental period in Bio-oss block alone implantedlegs and also periosteum implanted legs. We concluded that bovine hydroxyapatite Bio-oss has a good capacity of osteoconduction. New bone can be formed after the implantation of hydroxyapatite combined with free periosteum.

    Release date:2016-09-01 11:11 Export PDF Favorites Scan
  • Biomechanical study of a newly-designed Y type pedicle screw in osteoporotic synthetic bone

    Objective To evaluate the biomechanical stability of a newly-designed Y type pedicle screw (YPS) in osteoporotic synthetic bone. Methods The osteoporotic synthetic bone were randomly divided into 3 groups (n=20). A pilot hole, 3.0 mm in diameter and 30.0 mm in deep, was prepared in these bones with the same method. The YPS, expansive pedicle screw (EPS), and bone cement-injectable cannulated pedicle screw (CICPS) were inserted into these synthetic bone through the pilot hole prepared. X-ray film examination was performed after 12 hours; the biomechanical stability of YPS, EPS, and CICPS groups was tested by the universal testing machine (E10000). The test items included the maximum axial pullout force, the maximum running torque, and the maximum periodical anti-bending. Results X-ray examination showed that in YPS group, the main screw and the core pin were wrapped around the polyurethane material, the core pin was formed from the lower 1/3 of the main screw and formed an angle of 15° with the main screw, and the lowest point of the inserted middle core pin was positioned at the same level with the main screw; in EPS group, the tip of EPS expanded markedly and formed a claw-like structure; in CICPS group, the bone cement was mainly distributed in the front of the screw and was dispersed in the trabecular bone to form a stable screw-bone cement-trabecular complex. The maximum axial pullout force of YPS, EPS, and CICPS groups was (98.43±8.26), (77.41±11.41), and (186.43±23.23) N, respectively; the maximum running torque was (1.42±0.33), (0.96±0.37), and (2.27±0.39) N/m, respectively; and the maximum periodical anti-bending was (67.49±3.02), (66.03±2.88), and (143.48±4.73) N, respectively. The above indexes in CICPS group were significantly higher than those in YPS group and EPS group (P<0.05); the maximum axial pullout force and the maximum running torque in YPS group were significantly higher than those in EPS group (P<0.05), but there was no significant difference in the maximum periodical anti-bending between YPS group and EPS group (P>0.05). Conclusion Compared with EPS, YPS can effectively enhance the maximum axial pullout force and maximum rotation force in the module, which provides a new idea for the design of screws and the choice of different fixation methods under the condition of osteoporosis.

    Release date:2017-10-10 03:58 Export PDF Favorites Scan
  • Application Status of Rapid Prototyping Technology in Artificial Bone Based on Reverse Engineering

    Artificial bone replacement has made an important contribution to safeguard human health and improve the quality of life. The application requirements of rapid prototyping technology based on reverse engineering in individualized artificial bone with individual differences are particularly urgent. This paper reviewed the current research and applications of rapid prototyping and reverse engineering in artificial bone. The research developments and the outlook of bone kinematics and dynamics simulation are also introduced.

    Release date:2021-06-24 10:16 Export PDF Favorites Scan
  • REPAIR OF BONE DEFECT DUE TO TUMOUR RESECTION WITH SELF-SETTING CALCIUM PHOSPHATE CEMENT IN CHILDREN

    OBJECTIVE: To study the effect of self-setting calcium phosphate cement (CPC) on the repair of local bone defects after resection of cyst in children. METHODS: From December 1998 to May 2002, 22 patients with bone defects were repaired with CPC. Their ages ranged from 4 to 10 years with an average of 8.3 years. There were 11 cases of non-ossifying fibroma, 7 cases of osteoid osteoma, 2 cases of bone cyst and 2 cases of fibrous dysplasia. The bone defects are located as the following: femur in 14 cases, tibia in 6 cases and humerus in 2 cases. CPC spongiosa granules were filled in 11 cases, injectable CPC were filled in 2 bone cyst cases. The patients were followed up for 5-48 months, averaged 23.5 months. RESULTS: Bone matrix grew well and no recurrence was found. CONCLUSION: The method with simple CPC in repairing bone defects is safe, non-toxic, economic and convenient in children.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • 经皮撬拨复位加自固化磷酸钙人工骨植入治疗跟骨骨折

    目的 总结经皮撬拨复位结合自固化磷酸钙人工骨植入治疗跟骨骨折的治疗方法和效果。 方 法 2004 年6 月- 2008 年6 月,收治跟骨骨折13 例。男11 例,女2 例;年龄18 ~ 61 岁,平均38 岁。高处坠落伤9 例,砸伤4 例。均为单侧闭合骨折。按Sanders 分型:Ⅱ型5 例,Ⅲ型7 例,Ⅳ型1 例。X线片示Bouml;hler 角为— 10 ~ 15°,平均5°。受伤至手术时间4 h ~ 2 d。行经皮克氏针撬拨复位骨折,于骨折缺损处注入4 ~ 6 mL 注射型自固化磷酸钙人工骨修复。 结果 术后无软组织坏死及感染发生。13 例均获随访,随访时间1 ~ 2 年。X 线片示骨折均于术后3 ~ 5 个月愈合;Bouml;hler 角为15 ~ 40°,平均27.8°。关节面复位高度无丢失,骨折愈合后逐渐恢复负重行走功能。注射型材料未引起血磷、血钙增高及过敏、毒性反应。11 例于术后6 个月自固化磷酸钙人工骨完全降解,2 例于8 个月降解完全;降解同时骨组织生成。按美国足踝外科学会(AOFAS)评分:优7 例,良4 例,一般2 例,优良率84.6%。 结论 经皮撬拨复位加自固化磷酸钙人工骨植入治疗跟骨骨折具有操作简便、创伤小、并发症少的优点。

    Release date:2016-08-31 05:47 Export PDF Favorites Scan
  • EXPERIMENTAL STUDIES ON THE POROUS CALCIUM PHOSPHATE CEMENT COMBINED WITH RECOMBINANT HUMAN BONE MORPHOGENETIC PROTEIN 2 FOR BONE DEFECTS REPAIR

    Objective To study in vitro sustained release behaviour of the recombinant human bone morphogenetic protein 2(rhBMP-2) from the sample which porous calcium phosphate cement (PCPC) was combined with rhBMP-2, and to evaluate the effect of PCPC/rhBMP-2 composite on repairing bone defect in the animalstudy.Methods rhBMP-2 was absorbed into PCPC by vacuum-adsorption and freeze-dried at -40℃, the PCPC/rhBMP-2 enwrapped with chitosan as the experimental group, the pure PCPC/rhBMP-2 as the control group, then the sustained release ofrhBMP-2 from PCPC was determined in simulated body fluid (SBF) by UV-VIS spectrophotometer. At same time, the PCPC/rhBMP-2 composites with chitosan were implanted into the (4.2 mm×5.0 mm femora defects of rabbits, which were considered as the experimental group, whereas in the control group only PCPC was implanted. The effect of repairingbone defect was evaluated in the 4th and 8th week postoperatively by radiograph and histomorphology.Results The PCPC have a high absorption efficiency to rhBMP-2, and the release of rhBMP-2 was sustained release system. The release of rhBMP-2 from PCPC in the experimental group (99% after 350 hours) was slowerthan that in the control group (100% after 150 hours). In the experimental group, the radiological and histomorphological evaluations showed that theinterfaces between the materials and host bones became blurred both at 4th and 8th week. The implanted materials were partially absorbed, and the implanted areas exhibited the formation of new bone. In the control group, a little amount of new bones was observed. Conclusion The PCPC shows great clinical potential as a carrier for rhBMP-2. The PCPC/rhBMP-2 composite possesses much potentialities of osteoinductivity and the ability of repairing bone defect, so it can be used as a novel bone substitute clinically. 

    Release date:2016-09-01 09:26 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON OSTEOINDUCTION OF CORAL COMPOSITED ARTIFICIAL BONE

    OBJECTIVE To improve the osteoinduction of coral and provide a perfect bone graft substitute for clinical bone defects. METHODS By combining coral with collagen and recombinant human bone morphogenetic protein-2(rhBMP-2), coral/collagen/rhBMP-2 composite was obtained. The composite was implanted into the back muscle pouches of mice, and coral/collagen or coral/rhBMP-2 were implanted as control. The osteoinduction of the composite was assessed by histology and image analysis system. RESULTS The chondrocyte differentiation and matrix formation were observed in local sites after one week, lamellar bone with bone marrow were formed after 4 weeks, and coral were absorbed partially. The quantity of osteoinduction was time-related and rhBMP-2 dose-related(P lt; 0.01). Coral/collagen and coral/rhBMP-2 implants did not show any bone or cartilage formation. CONCLUSION The coral/collagen/rhBMP-2 composite possesses a superior osteoinduction and will be a new type of bone substitute to be used in orthopedic and maxillofacial surgery.

    Release date:2016-09-01 11:05 Export PDF Favorites Scan
  • APPLICATION OF THREE-DIMENSIONAL PRINTING TECHNIQUE IN ARTIFICIAL BONE FABRICATION FOR BONE DEFECT AFTER MANDIBULAR ANGLE OSTECTOMY

    ObjectiveTo investigate the application of three-dimensional (3-D) printing technique combining with 3-D CT and computer aided-design technique in customized artificial bone fabrication, correcting mandibular asymmetry deformity after mandibular angle ostectomy. MethodsBetween April 2011 and June 2013, 23 female patients with mandibular asymmetry deformity after mandibular angle ostectomy were treated. The mean age was 27 years (range, 22-34 years). The disease duration of mandibular asymmetry deformity was 6-16 months (mean, 12 months). According to the CT data and individualized mandibular angle was simulated based on mirror theory, 3-D printed implants were fabricated as the standard reference for manufacturers to fabricated artificial bone graft, and then mandible repair operation was performed utilizing the customized artificial bone to improve mandibular asymmetry. ResultsThe operation time varied from 40 to 60 minutes (mean, 50 minutes). Primary healing of incisions was obtained in all patients; no infection, hematoma, and difficulty in opening mouth occurred. All 23 patients were followed up 3-10 months (mean, 6.7 months). After operation, all patients obtained satisfactory facial and mandibular symmetry. 3-D CT reconstructive examination results after 3 months of operation showed good integration of the artificial bone. Conclusion3-D printing technique combined with 3-D CT and computer aided design technique can be a viable alternative to the approach of maxillofacial defects repair after mandibular angle ostectomy, which provides a accurate and easy way.

    Release date: Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content