Objective To investigate the biological response and chemotaxis of endothel ial cells on template materials with different protein concentrations on the same surface, to provide the evidence for deep understanding of chemical induced cell motil ity. Methods Microcontact printing technique was employed to fabricate template materials with four different concentrations of collagen (50, 100, 200, 300 μg/mL) on the same substrate. Scanning electron microscopy was employed to characterize the qual ity of polydimethylsiloxane (PDMS) stamp. Confocal laser scanning microscopy (CLSM) was util ized to characterize the absorption of different concentrations of FITC conjugated collagen (50, 100, 200, 300 μg/mL) on the substrates surfaces. Software was used to analyze the fluorescence intensity of adsorbed protein on the substrates. Albumin was then used to block the substrates for cell culture of human umbil ical vein endothel ial cells (hUVEC). Substrates with no collagen adsorption were used as control samples. The influence of different concentrations of collagen on the prol iferation of hUVEC was investigated via MTT assay at 6, 24, 48 and 72 hours of culture. The cytoskeletal structures of cells were characterized by CLSM. The cell’ s migration speed and absolute displacement were measured by path measurement of single cell after 24 hours of culture. Results Fabricated PDMS stamps with complete pattern were flat. Template substrates were fully covered with evenly distributed collagen protein. The fluorescence intensities were 38.51 ± 1.63, 55.21 ± 3.88, 73.17 ± 3.59, and 80.95 ± 1.12 in adsorbed FTIC conjugated collagen with 50, 100, 200 and 300 μg/mL, respectively. Endothel ial cells spread better on various substrates coated with collagen than those of control samples. The prol iferation of endothel ial cells on collagen coated substrateswas significantly higher than that of control group (P lt; 0.05). With collagen concentration increasing from 50 µg/mL to 300µg/mL, the prol iferation abil ities and absolute displacements of endothel ial cells significantly increased (P lt; 0.05). Except for the group with 300 μg/mL, the migration speed of endothel ial cells on collagen coated substrates was significantly lower (P lt; 0.05) than that of control group. However, the migration speed of endothel ial cells on collagen coated substrates significantly increased (P lt; 0.05) along with collagen concentration increasing from 50 µg/mL to 300 µg/mL. Conclusion It is feasible to acquire domains with different protein concentrations on the same substrate using microcontact printing technique for investigating cell’s chemotaxis.
Immuno-fluorescence technique can qualitatively determine certain nuclear translocation, of which NF-κB/p65 implicates the activation of NF-κB signal pathways. Immuno-fluorescence analysis software with independent property rights is able to quantitatively analyze dynamic location of NF-κB/p65 by computing relative fluorescence units in nuclei and cytoplasm. We verified the quantitative analysis by Western Blot. When we applied the software to analysis of nuclear translocation in lipopolysaccharide (LPS) induced (0.5 h, 1 h, 2 h, 4 h) primary human umbilical vein endothelial cells (HUVECs), we found that nuclear translocation peak showed up at 2h as with calculated Western blot verification results, indicating that the inventive immuno-fluorescence analysis software can be applied to the quantitative analysis of immuno-fluorescence.
OBJECTIVE: To elongate the proliferation life-span of human umbilicus vein endothelial cell (HUVEC). METHODS: We synthesized the human telomerase reverse transcriptase mRNA (hTERT mRNA) by in vitro transcription, then transferred the hTERT mRNA into HUVEC in quicent stage by lipofect introduction. RESULTS: Telomerase expressed transiently in HUVEC, and the cell life-span was elongated for 7 population doublings. CONCLUSION: Telomerase can be reconstructed controllably and transiently in HUVEC by hTERT mRNA introduction, this method has the potential to be used to elongate the lifespan of cells cultured in vitro.
Objective To investigate the effect of keratin 17 (K-17) on the migration, prol iferation and tube formation of human umbil ical vein endothel ial cell (HUVEC), and to real ize the role of K-17 in angiogenesis. Methods After HUVEC were cultured in DMEM medium supplemented with 10%FBS overnight, K-17-siRNA-mixture (experimental group) and Ncontrol-siRNA-mixture (negative control group) were added into HUVEC, respectively, by Lipofectamine 2000 transfection assay, and the final concentration of the siRNA was 50 nmol/L. Lipofectamine 2000 alone was used as the control. After the cells were cultured for 36 hours, the cell prol iferation abil ity was detected by cell counting. After 30-hour culture, the cell’s abil ities of migration and differentiation to tube were detected by 24-well Mill icell units and the collagen gel assay, respectively. In addition, non-siRNA-treated HUVEC were cultured for 24 hours in DMEM medium supplemented with 10%FBS (group A), 2%FBS (group B) and 2%FBS+10 ng/mL bFGF (group C), respectively, and then the expression of K-17 in HUVEC was detected by RT-PCR and Western blot. Results After the treatment with K-17-siRNA for 36 hours, HUVEC exhibited no significant difference in the prol iferation, compared with both control and negative control groups (P gt; 0.05). After transfected with K-17-siRNA for 30 hours, the number of HUVEC in the experimental group which migrated from the upper chamber to the lower chamber of Mill icell wells within 24 hours (3719.0 ± 319.0) was smaller than both control (7 437.5 ± 212.0) and negative control (7 356.3 ± 795.7) groups, with significant difference (P lt; 0.01). However, there was no significant difference between the control group and the negative control group (P gt; 0.05). After HUVEC were transfected with K-17- siRNA for 30 hours, the number of tubes in the experimental group, the negative control group and the control group in 24 hours was (1.1 ± 0.5), (3.6 ± 0.5) and (3.2 ± 0.6) per field, respectively. The experimental group was significantly different from both control and negative control groups (P lt; 0.01), and there was no significant difference between the negative control group and the control group (P gt; 0.05). The expression of K-17 protein in HUVEC in groups A, B and C was 0.25 ± 0.02, 0.08 ± 0.01 and 0.72 ± 0.03, respectively. There was significant difference among these three groups (P lt; 0.01). Conclusion K-17 has no impact on cell prol iferation, but may augment endothel ial cell migration, which may facil itate angiogenesis.
Objective To construct human recombinant lentiviral expression vector of microRNA-210 (miR-210)and to explore the over-expression of miR-210 on the capillary formation in human umbilical vein endothelial cells 12 (HUVE-12). Methods The recombinant lentiviral expression vector of pGCSIL-green fluorescent protein (GFP)-pre-miR-210 wasconstructed by molecular cloning and transfected to HUVE-12 (LV-miR-210-GFP group), only pGCSIL-GFP was transfectedas control group (LV-GFP group). The miR-210 expression activity was evaluated by GFP reporter through fluorescencedetection and real-time fluorescent quantitative PCR. The ephrinA3 protein expression was measured by flow cytometry. Theconcentration of vascular endothelial growth factor (VEGF) in culture supernatant was determined by ELISA. The cells werecultured in 96-well culture plate coated with Matrigel to assess the abil ity of capillary formation. Results The recombinantplasmid pGCSIL-GFP-pre-miR-210 was confirmed by restriction endonuclease analysis and DNA sequencing. Fluorescencedetection showed that the fluorescence intensity of GFP was highest between 48 and 72 hours after transfection. Real-timefluorescent quantitative PCR showed that the miR-210 expression of LV-miR-210-GFP group was 9.72 times higher than thatin LV-GFP group (t= —11.10,P=0.00). Flow cytometry analysis showed that the positive cell rate of enphrinA3 in LV-miR-210-GFP group (12.52% ± 0.67%) was significantly lower than that in LV-GFP group (73.22% ± 1.45%) (t= —66.12,P=0.00).The concentration of VEGF in supernatant in LV-miR-210-GFP group was significantly higher than that in LV-GFP group[(305.29 ± 16.52) pg/mL vs. (42.52 ± 3.11) pg/mL, t= —27.06,P=0.00]. In vitro capillary-l ike formation assay showed that thenumber of capillaries was significantly larger in LV-miR-210-GFP group than in LV-GFP group (17.33 ± 6.33 vs. 6.33 ± 2.33,t= —2.83,P=0.04). Conclusion The recombinant lentiviral expression vector of miR-210 is constructed successfully andHUVE-12 over-expressing miR-210 can significantly increase the capillary formation, which facil itates further study on themolecular functions of miR-210 in angiogenesis.
ObjectiveTo construct a lentiviral vector-mediated gene-targeted small interfering RNA (siRNA) vector to vascular endothelial growth factor (VEGF), and choose the RNAi with the highest silence efficiency to VEGFA gene. MethodsThree kinds of VEGFA gene-targeted hairpin siRNA was designed (KD1, KD2, KD3), then two complementary oligo nucleotide strand were synthesized and inserted into pGCSIL-GFP vector. After annealing, the recombined vector pGCSIL-GFP-siVEGFA was gotten, which was digested by restrictive enzyme and sequenced, and was co-transfected with the pHelper 1.0 and pHelper 2.0 into 293T cells by Lipofectamine 2000. After that, the new vector was transfected into human umbilical vein endothelial cells (HUVECs), and the mRNA expression level of VEGFA gene in cells was detected by RT-PCR. Then we compared the mRNA expression level of VEGFA gene of the 3 groups. ResultspGCSIL-GFP-siVEGFA was built successfully, and all the siRNA could silence the expression of VEGFA mRNA in the HUVECs, and the relative expressions of VEGFA mRNA to the control group were 0.614±0.043 (KD1), 0.334±0.030 (KD2), and 0.201±0.015 (KD3) respectively. ConclusionWe've successfully constructed the siRNA vector for VEGFA mRNA, which can obviously suppress the expression of VEGFA mRNA.
Objective To investigate the protocols of combined culture of human placenta-derived mesenchymal stem cells (HPMSCs) and human umbilical vein endothelial cells (HUVECs) from the same and different individuals on collagen material, to provide the. Methods Under voluntary contributions, HPMSCs were isolated and purified from human full-term placenta using collagenase IV digestion and lymphocyte separation medium, and confirmed by morphology methods and flow cytometry, and then passage 2 cells were cultured under condition of osteogenic induction. HUVECs were isolated from fresh human umbilical vein by collagenase I digestion and subcultured to purification, and cells were confirmed by immunocytochemical staining of von Willebrand factor (vWF). There were 2 groups for experiment. Passage 3 osteoblastic induced HPMSCs were co-cultured with HUVECs (1 ∶ 1) from different individuals in group A and with HUVECs from the same individual in group B on collagen hydrogel. Confocal laser scanning microscope was used to observe the cellular behavior of the cell-collagen composites at 1, 3, 5, and 7 days after culturing. Results Flow cytometry showed that HPMSCs were bly positive for CD90 and CD29, but negative for CD31, CD45, and CD34. After induction, alizarin red, alkaline phosphatase, and collagenase I staining were positive. HUVECs displayed cobble-stone morphology and stained positively for endothelial cell marker vWF. The immunofluorescent staining of CD31 showed that HUVECs in the cell-collagen composite of group B had richer layers, adhered and extended faster and better in three-dimension space than that of group A. At 7 days, the class-like microvessel lengths and the network point numbers were (6.68 ± 0.35) mm/mm2 and (17.10 ± 1.10)/mm2 in group A, and were (8.11 ± 0.62) mm/mm2 and (21.30 ± 1.41)/mm2 in group B, showing significant differences between the 2 groups (t=0.894, P=0.000; t=0.732, P=0.000). Conclusion Composite implant HPMSCs and HUVECs from the same individual on collagen hydrogel is better than HPMSCs and HUVECs from different individuals in integrity and continuity of the network and angiogenesis.
OBJECTIVE: To explore the possibility of improving the performance of tissue engineering valve by means of preendothelialization with cultured human umbilical vein endothelial cell(hUVEC) and to develop a new xenogenic bioprosthesis valve material. METHODS: The porcine aortic valves treated by use of glutaraldehyde(GA), epoxychloropropane(EC), L-glutamic acid(L-GA) and cellular extraction(CE) respectively were divided into four groups; group 1(GA), group 2(EC), group 3(EC + L-GA), and group 4(EC + L-GA + CE). The cultured hUVECs were seeded onto the treated porcine aortic valve, then that stuff were examined by means of EC VIII factor staining, living cells counting and microscopy. RESULTS: The cultured hUVEC could adhere to culturing bottle wall an hour later, and propagated to two passages after seven days. The cells increased with serial passage at a 7-day interval. But the hUVEC grew slowly when seeded onto the treated valve material except group 4. The cells in group 4 covered the surface of valve completely seven days later, which could also be seen in group 3 but not completely. There was no cell growing in group 1, and only fewer in group 2. The living cell in groups 3 and 4 were significantly more than in groups 1 and 2 on the 3rd, 7th and 14th days (P lt; 0.01), meanwhile, the number of cells in group 4 were also significantly more than that in group 3 (P lt; 0.05). The covering area of cultured cell on the valve material in groups 3 and 4 was significantly larger than that in groups 1 and 2. The covering area of cell in group 4 was over 95%, and higher than that in group 3(60%-70%). The hUVEC of group 4 arranged in pattern of three dimension. So it could resist rising of foreign power from the cardiac cavity of high pressure and flowing volume. There was no cell on the leaflet surface in group 1, and only a few pinch of cells could be seen in group 2. CONCLUSION: The porcine aortic valve can be used to be an ideal xenogeneic valve scaffold; the scaffold of porcine aortic valve should be treated by use of epoxy-chloropropane, L-glutamic acid and cellular extraction, so that a best growing environment to the hUVEC would be given; the cultured hUVECs used to be source of seed living cell had a boundless prospects; the growing velocity of cultured hUVEC was controllable, which facilitated clinical application; and the endothelial cells of xenogeneic valve material which grew compactly onto the scaffold can resist rising of foreign power from the cardiac cavity itself.
Objective To develop an in vitro three-dimensional angiogenesis system and analyze the expression and function of CD105 in angiogenesis. Methods After primary human umbilical vein endothelial cells (HUVEC) were purified and cultured, the microcarriers were coated with HUVEC and then embedded and cultured into fibrin gel. The angiogenesis process of HUVEC on the microcarriers was formed. The expression of CD105 during this process was detected by reverse transcription polymerase chain reaction (RT-PCR). Antisense oligodeoxynucleotide (ASODN) was used to inhibit the expression of CD105 and the changes of the angiogenesis process were analyzed quantitatively. Results HUVEC on the microcarriers which were embedded into the fibrin gel, occurred the angiogenesis process of sprouts, branches and capillary networks with lumina. During this process, CD105 was over expressed in the periods of forming sprouts and branches, and depressed in the relatively steady periods including the periods before forming sprouts and after forming capillary networks. While the expression of CD105 was inhibited by ASODN, the angiogenesis process was significantly inhibited. Conclusions The expression of CD105 is varied within the angiogenesis process, over expressing during the sprouts and branches forming periods. Inhibiting the expression of CD105 could efficiently inhibit angiogenesis.
ObjectiveTo observe the changes of follistatin-like protein 1 (FSTL1) in serum of patients with proliferative diabetic retinopathy (PDR).MethodsTwenty PDR patients confirmed by clinical examination and 20 normal people were included in the study. Human retinal vascular endothelial cells (HRCEC) were divided into HRCEC blank control group, 3 h hypoxia group, 6 h hypoxia group. Human umbilical vein endothelial cell (HUVEC) were divided into HUVEC blank control group, 3h hypoxia group, 6h hypoxia group. Real-time quantitative PCR (RT-PCR) and ELISA were used to determine the expression of FSTL1, TGF-β, VEGF, connective tissue growth factor (CTGF) mRNA and protein in peripheral blood and cells of all groups from all subjects.ResultsThe expressions of FSTL1, TGF-β1, CTGF, VEGF mRNA in blood samples of patients with PDR were 1.79±0.58, 0.97±0.21, 1.85±0.69 and 1.38±0.44. The expressions of FSTL1, TGF-β1 protein were 1.19±0.50, 0.71±0.24 ng/ml and 734.03±116.45, 649.36±44.23 ng/L. Compared with normal people, the differences were statistically significant (tmRNA=0.90, 0.21, 2.85, 1.77; P=0.00, 0.00, 0.04, 0.02. tprotein=1.88, 7.68; P=0.00, 0.02). The cell viability of HRCEC cells in the 3 h hypoxia group and the 6 h hypoxia group were 0.66±0.05 and 0.64±0.04, respectively. Compared with the blank control group, the difference was statistically significant (F=13.02, P=0.00). The cell viability of HUVEC cells in the 3 h hypoxia group and the 6 h hypoxia group were 0.63±0.06 and 0.68±0.06, respectively. Compared with the blank control group, the difference was statistically significant (F=26.52, P=0.00). Comparison of FSTL1, TGF-β1, CTGF, and VEGF mRNA expression in HRCEC blank control group and 3 h hypoxia group, the differences were statistically significant (F=14.75, 44.93, 85.54, 6.23; P=0.01, 0.00, 0.00, 0.03). Compared with the HRCEC blank control and 3 h hypoxia group, the expressions of FSTL1 and TGF-β1 protein were statistically significant (P<0.05). There was a statistically significant difference in TGF-β1 protein expression in the hypoxic 6 h group (P=0.03) and no significant difference in FSTL1 protein expression (P=0.68). Comparison of FSTL1, TGF-β1, CTGF, and VEGF mRNA expression in HUVEC blank control group and 3h hypoxia group, the differences were statistically significant (F=19.08, 25.12, 22.89, 13.07; P=0.00, 0.00, 0.00, 0.01). Immunofluorescence staining results showed that FSTL1, TGF-β1, CTGF, and VEGF proteins were positively expressed in cells in the 3h hypoxia and 6h hypoxia groups.ConclusionThe expression of FSTL1 gene and protein in serum of PDR patients was significantly higher than that of normal people.