west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "光刺激" 27 results
  • 视网膜光化学损伤感光细胞凋亡的分子基础

    视网膜光化学损伤动物模型是研究视网膜变性类疾病的良好模型,研究发现凋亡是视网膜感光细胞光化学损伤以及其它视网膜变性疾病感光细胞丢失的主要机制。本文阐述了核转录因子kappa;B(NFkappa;B)体系,arrestin蛋白家族,AP-1和神经营养因子受体P75NTR等调控感光细胞凋亡的分子机制。 (中华眼底病杂志,2004,20:396-398)

    Release date:2016-09-02 05:58 Export PDF Favorites Scan
  • Blue lightinduced replicative senescence of rat retinal pigment epithelial cells

    Objective To investigate the relationship between exposure intensity and illumination time of blue light and replicative senescence of rat retinal pigment epithelial (RPE) cells.Methods Thirtysix 12-14 weeks Wistar rats were kept in the cage with a bluelight bulb [(450plusmn;10) nm], and were randomly divided into four groups (no light,nature light,500 lx light and 1000 lx light illumination), each has nine rats. The rats in each group were further divided into three subgroups according to illumination time (one month,two months or three months). Eyeballs were collected after intraperitoneal injection of 10% chloral hydrate. The right eye of each rat was embedded in paraffin and sectioned for hematoxylineosin (HE) staining, while frozen sections of the left eye were stained for the senescence-associated beta;-galactosidase (SA-beta;-Gal). The data were analyzed by SPSS11.5 statistical software.Results The amounts of SA-beta;-Gal positive RPE cells were significantly different between all groups under the same illumination time 17 (P=0.000), and between all subgroups of different illumination time with same exposure intensity (P<0.01)except for the control group (no light). Conclusion Bluelight can induce replicative senescence in rat RPE cells in an intensity and timedependent manner.

    Release date:2016-09-02 05:43 Export PDF Favorites Scan
  • Prostaglandins in rat retina during photochemical damage 

    Purpose To evaluate the prostag landins(PG) levels and to identify the effect of dexamethasone(DXM) on PG in response to photochemical insult in rat retina. Methods The experiments were performed on 36 SD rats which were separated into two groups,control and treated groups,and the latter received daily intraperitoneal injections of DXM (1 mg/kg) for 5 consecutive days,starting 3 days before light exposure.The animals were continually exposed to green fluorescent light(510-560 nm)with an illuminance level of (1900plusmn;106.9)lx for 24 hrs.The retinal concentration of PGE 2 and 6-keto-PGF1alpha; were tested at 6hrs,1,3,7 and 14 days after light exposure.  Results The PGE2 and 6-keto-PGF1alpha; levels of the control groups (37.50plusmn;2.75,48.06plusmn;4.0 4,81.90plusmn;4.89) pg/mg and (4.68plusmn;0.69,7.50plusmn;0.57,10.40plusmn;0.71) pg/mg had significantly higher values than those of the treated rats(20.60plusmn;4.28,37.36plusmn; 3.34,54.85plusmn;4.57) pg/mg and (2.50plusmn;0.59,4.68plusmn;0.81,6.87plusmn;1.10)pg/mg (Plt;0.01) after 6 hrs,1 and 3 days light exposure respectively. Conclusion By inhibition of PG synthesis,the DXM may play an ameliorative effect on retinal photochemical injury of rats. (Chin J Ocul Fundus Dis,1999,15:94-96)

    Release date:2016-09-02 06:07 Export PDF Favorites Scan
  • Light-emitting diode treatment protects the photoreceptor from light-induced damage in rat

    Objective To assess the effects of 670nm LED (lightemitting diode) to protect the photoreceptor from the lightinduced damage in a rat model. Methods 32 SD rats were randomly assigned to one of eight groups: untreated control group, the LEDtreated control group, three groups of lightinduced damage,and three groups of lightinduced damage treated with LED. Lightinduced damage result from exposing to constant light for 3 hours of different illuminations of 900,1800 and 2700 lx, respectively. The LED treatment (50 mW) was delivered for 30 minutes at 3 hours before the light damage and 0,24 and 48 hours after the light damage. Retinal function and morphology were measured by electroretinogram (ERG) and histopathology assay. Results The illumination of 900 lx for 3 hours did not damage the rat retina. The illumination of 1800 lx for 3 hours resulted in thinner ONL and no OS and IS. The ratio of damaged area/total retinal area was 048plusmn;012, the damaged thickness of ONL/normal ONL (L5 ) was 039plusmn;007,and the amplitude of ERG b wave was (431plusmn;120) mu;V. With the LED treatment the ratio of damaged area decreased (M6=017plusmn;0.12, P5/6=0.002), and the ratio of the damaged thickness of ONL also decreased (L6=0.22plusmn;0.09, P5/6lt;0.01), and the amplitude of ERG b wave increased to (1011plusmn;83) mu;V(P5/6lt;0.001). The illumination of 2700 lx for 3 hours caused severed damage to the rat retina and the LED could not protect them significantly. Conclusions 670 nm LED treatment has an evident protective effect on retinal cells against light-induced damage, which may be a simple and effective therapy to prevent or to delay agerelated macular degeneration.

    Release date:2016-09-02 05:42 Export PDF Favorites Scan
  • Experimental study on retinal photochemical damage in rats exposed to the green fluorescent light

    Objective To observe the pathological and functional changes of retinal photochemical damages exposed to green flurescent light. Methods The Sprague Dawley rats were continually exposed to green fluorescent light with an illuminancem level of (1 900plusmn;106.9) Lx for 24 hours.The changes of retinal morphology and morphometrics and flash electroretinogram were studied before light exposure and at the 6th hour,6th day and 14th day after light exposure. Results At the 6th hours after light exposure,the outer nuclear layer(ONL)of retina becoma thinner compared with that bfore light exposure.The thickness of ONL decreased by 23.91% and the inner and outer segments appeared disorderly arranged.At the 6th day after light exposure the thickness of ONL is thinner than that at the6th hour,i.e.decreased by 46.6%. At the 14th day after light exposure the thickness of ONL decreased by 42.40%.Flash electroretinogram showed that the amplitudes of a and b wave decreased continuously at the 6th hour and 6th day and unrecovered at the 14th day after light exposure. Conclusion This model might be an ideal one for research on retinal photochemical damage. (Chin J Ocul Fundus Dis,1998,14:101-103)

    Release date:2016-09-02 06:11 Export PDF Favorites Scan
  • Apoptosis of photoreceptor cell in experimental rat retinal photoinjury

    Objective To further investigate pathologic mechanism of retinal phototrauma. Methods Twenty Wistar rats were divided into control and experimental groups.Their eyes were extracted in 12,24 and 36 hours after light exposure.HE stained retina samples were examined and TDT-mediated dUTP nick end labelling(TUNEL)method was employed to distinguish apoptotic cells. Results After 12-hour light exposure,slight vesiculation was observed in the rod outer segment of the retinas.After 24-hour light exposure,the outer nuclear layer showed predominant fractured and condensed nuclei and fragmented DNA.After 36-hour light exposure,the rod outer and inner segments were lysed and most of the nuclei in the outer nuclear layer were disappeared. Conclusions Apoptosis of photoreceptor cell is one of the important mechanisms which cause experimental retinal photoinjury of rats. (Chin J Ocul Fundus Dis, 1999, 15: 167-169)

    Release date:2016-09-02 06:07 Export PDF Favorites Scan
  • Effect of persistent flickering stimulus on electroretinogram and histopathology of guinea pigs

    Objective To observe the effect of persistent flickering stimulus on the structure and function of retina in guinea pigs during a developmentally sensitive period.Methods Twenty-four two- week-old guinea pigs were randomly divided into flicker light (FL) group and control group, with 12 guinea pigs in each group. Animals in FL group were raised under 500 Lux illumination with a duty diurnal cycle of 50% at a flash rate of 0.5 Hz. Animals in control group were reared under steady 500 Lux illumination. Light emitting diode (LED) lamps were used for lighting under a 12-hour light/12-hour dark cycle. After the collection of fundus photographs and electroretinograms recorded at week 12, eyeballs were taken out, three dimensions were measured, and histopathological changes were examined.Results Compared to control group, tessellated fundus in FL group appeared more prevalent; implicit time of ldquo;ardquo; waves were prolonged in electroretinogram; the eyeballs were increased in horizontal, vertical, axial dimensions by (0.89plusmn;0.30), (0.69plusmn;0.20) and (0.96plusmn;0.30) mm respectively, the differences between two groups were statistically significant (t=12.7,11.9,15.8;P<0.05). The gap of sclera collagen fiber was slightly widened.The photoreceptor layer was more likely to develop a disordered outer segment, which contained deciduous disc membranes.Conclusion Persistent flickering stimulus is attended by development of excessive ocular enlargement,which could affect the retinal structure and function of photoreceptors.

    Release date:2016-09-02 05:26 Export PDF Favorites Scan
  • THE CHANGES OF EXPRESSION LEVEL OF RHODOPSIN mRNA IN LIGHTDAMAGED RAT RETINAS THROUGH THE TECHNIQUE OF IN SITU HYBRIDIZATION

    PURPOSE:The changes of expression level of rhodopsin mRNA and its relationship with the morphology in light damaged rat retinas were studied. METHODS:The changes of expresson level of rhodopsin mRNA in light damaged rat retinas and the changes on retinal morphology were observed through the technique of in situ hybridization and electron microscopy. RESULTS:The hybridization signals of rhodopsin mRNA mainly distributed in the photoreceptor layer of retina,relatively b in the inner and outer segments. As the increase of light exposure time,the expression level of rhodopsin mRNA in retinas greatly decreased before the changes on morphological injury of retina. For the same eye globe of the same rat at the same time,the hybridization signals at the upper and posterior region of the retina decreased more obviously than the lower and peripheral region of the retina. CONCLUSIONS:It was demonstrated for the first time that the expression of rhodopsin mRNA was located at the photoreceptor layer of the retina. Continuous exposure to light could greatly decrease the expression of rhodopsin mRNA and the decreases differ regionally. It might be the early signals of retinal photic injury.It is a good method to study the expression level of retina mRNA through the in situ hybridization. (Chin J Ocul Fundus Dis,1997,13: 228-210)

    Release date: Export PDF Favorites Scan
  • Expression of vascular endothelial growth factor A and its receptors in light-injured human retinal pigment epithelial cells

    Objective To observe the expression of vascular endothelial growth factor A (VEGFA) and its receptors sFlt-1, kinase insert domain receptor (KDR) in lightinjured human retinal pigment epithelial (RPE) cells. Methods Cultured human RPE cells (8th - 12th generations) were divided into normal control group and light damage group. The cells of two groups were exposed to the 18 W cold white light (2200±300) Lux for 12 hours to induce light damage responses, but the cells of normal control group were packed by tinfoil with doubledeck high pressure disinfection. The VEGF-A, sFlt-1 and KDR mRNA and protein expressions were detected by reverse transcriptionpolymerase chain reaction (RT-PCR) and Western blot at 0, 6, 12, 24 hours after light damage. Results The VEGF-A mRNA and protein expressions in light damage group were significantly increased at 6 hours, and reached its peak at 12 hours after light damage which obviously higher than that in normal group (t=2.74, 2.93; P<0.05), and then went down gradually. The sFlt-1 mRNA and protein expressions in light damage group reached its peak at 12 hours after light damage which obviously higher than that in normal group (t=4.32, P<0.01), but obviously lower than that in normal group at 24 hours after light damage (t=2.41, P<0.05). The KDR mRNA and protein expressions in light damage group were obviously higher than that in normal group at 24 hours after light damage (t=2.89, P<0.05),but there was no changes at 6, 12 hours after light damage (t=1.84, P>0.05). Conclusions At 6, 12 hours after light damage, the expressions of VEGF-A and sFlt-1 increases significantly and KDR expression is stable in lightinjured RPE cells. At 24 hours after light damage, the expression of VEGF-A and sFlt-1 decreases, but KDR expression increases in light-injured RPE cells.

    Release date:2016-09-02 05:25 Export PDF Favorites Scan
  • Influence of down-regulation of HtrA1 expression by small interfering RNA on light-injured human retinal pigment epithelium cells

    ObjectiveTo observe the influence of down-regulation of HtrA1 expression by small interfering RNA on light-injured human retinal pigment epithelium (RPE) cells. MethodsCultured human RPE cells(8th-12th generations)were exposed to the blue light at the intensity of (2000±500) Lux for 6 hours to establish the light injured model. Light injured cells were divided into HtrA1 siRNA group, negative control group and blank control group. HtrA1 siRNA group and negative control group were transfected with HtrA1 siRNA and control siRNA respectively. The proliferation of cells was assayed by CCK-8 method. Transwell test was used to detect the invasion ability of these three groups. Flow cytometry was used to detect the cell cycle and apoptosis. The expression of HtrA1 and vascular endothelial growth factor (VEGF)-A was detected by real time-polymerase chain reaction and Western blot respectively. ResultsThe mRNA and protein level of HtrA1 in the light injured cells increased significantly compared to that in normal RPE cells (t=17.62, 15.09; P<0.05). Compared with negative control group and blank control group, the knockdown of HtrA1 in HtrA1 siRNA group was associated with reduced cellular proliferation (t=6.37, 4.52), migration (t=9.56, 12.13), apoptosis (t=23.37, 29.08) and decreased mRNA (t=17.36, 11.32, 7.29, 4.05) and protein levels (t=12.02, 15.28, 4.98, 6.24) of HtrA1 and VEGF-A. Cells of HtrA1 siRNA group mainly remained in G0/G1 phase, the difference was statistically significant (t=6.24, 4.93; P<0.05). ConclusionKnockdown of HtrA1 gene may reduce the proliferation, migration capability and apoptosis of light-injured RPE cells, and decrease the expression of VEGF-A.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content