Objective To investigate the impact of nutritional risk on unplanned readmissions in elderly patients with chronic obstructive pulmonary disease (COPD), to provide evidence for clinical nutrition support intervention. Methods Elderly patients with COPD meeting the inclusive criteria and admitted between June 2014 and May 2015 were recruited and investigated with nutritional risk screening 2002 (NRS 2002) and unplanned readmission scale. Meanwhile, the patients’ body height and body weight were measured for calculating body mass index (BMI). Results The average score of nutritional risk screening of the elderly COPD patients was 4.65±1.33. There were 456 (40.07%) patients who had no nutritional risk and 682 (59.93%) patients who had nutritional risk. There were 47 (4.13%) patients with unplanned readmissions within 15 days, 155 (13.62%) patients within 30 days, 265 (23.28%) patients within 60 days, 336 (29.53%) patients within 180 days, and 705 (61.95%) patients within one year. The patients with nutritional risk had significantly higher possibilities of unplanned readmissions within 60 days, 180 days and one year than the patients with no nutritional risk (all P<0.05). The nutritional risk, age and severity of disease influenced unplanned readmissions of the elderly patients with COPD (all P<0.05). Conclusions There is a close correlation between nutritional risk and unplanned readmissions in elderly patients with COPD. Doctors and nurses should take some measures to reduce the nutritional risk so as to decrease the unplanned readmissions to some degree.
ObjectiveThe re-hospitalization and death events of patients heart failure caused by coronary heart disease are characterized by non-independence, heterogeneity, and censored data. A joint frailty model is established to jointly model the events, explore the risk factors affecting the prognosis of patients, and reduce the re-hospitalization rate and mortality of patients. MethodsThe sample included 4 682 patients with heart failure caused by coronary heart disease in two tertiary hospitals from January 2014 and June 2019. The electronic medical record information of patients during hospitalization and their follow-up information were collected. The Cox model, conditional frailty model and joint frailty model were used to analyze patient re-hospitalization and death. ResultsThe joint frailty model identified patients with a higher risk of both relapse and death (θ=0.209, P<0.001). Risk factors for re-hospitalization were advanced age, grade 3 hypertension, mental work, no medical insurance, high cystatin C, low ejection fraction, and low free thyroxine-3 and thyroxine-4. Antiplatelet drugs and statins significantly reduced the risk of re-hospitalization. Risk factors for death were advanced age, New York Heart Association classification Ⅲ to Ⅳ, no medical insurance, mental work, high cystatin C level, high troponin-I level, low free thyroxine-3, and low ejection fraction. Percutaneous coronary intervention, and taking antiplatelet drugs and statins significantly reduced the risk of death. ConclusionThe joint frailty model can simultaneously model recurring and terminal events, and accurately predict them. Our results suggest that thyroid hormone levels and cystatin C levels of patients should be considered more carefully. People with mental jobs should change bad working habits to reduce adverse outcomes.
Objective To analyze the influencing factors of unplanned readmission for day surgery patients under the centralized management mode, and to provide a scientific basis for improving the medical quality and safety of day surgery. Methods The data of patients in the day surgery ward of the Second Affiliated Hospital Zhejiang University School of Medicine between October 2017 and October 2021 were retrospectively collected, and they were divided into an unplanned readmission group and a control group according to whether they were unplanned readmission within 31 days. Multivariate logistic regression model was used to analyze the influencing factors of patients’ unplanned readmission within 31 days. Results There were 30 636 patients, of which 46 were unplanned readmission patients, accounting for 0.15%. Logistic regression analysis showed that male [odds ratio (OR)=0.425, 95% confidence interval (CI) (0.233, 0.776), P=0.005], thyroid surgery [OR=19.938, 95%CI (7.829, 50.775), P<0.001], thoracoscopic partial lobectomy [OR=13.481, 95%CI (5.835, 31.148), P<0.001], laparoscopic cholecystectomy [OR=10.593, 95%CI (3.918, 28.641), P<0.001] and hemorrhoidectomy [OR=13.301, 95%CI (4.473, 39.550), P<0.001] were risk factors for unplanned readmission in patients undergoing day surgery. Conclusion Medical staff in day surgery wards need to strengthen supervision of male patients and high risk surgical patients, and improve patients’ awareness of recovery, so as to reduce the rate of unplanned readmission.
ObjectiveTo systematically evaluate the predictive models for re-admission in patients with heart failure (HF) in China. MethodsStudies related to the risk prediction model for HF patient re-admission published in The Cochrane Library, PubMed, EMbase, CNKI, and other databases were searched from their inception to April 30, 2024. The prediction model risk of bias assessment tool was used to assess the risk of bias and applicability of the included literature, relevant data were extracted to evaluate the model quality. ResultsNineteen studies were included, involving a total of 38 predictive models for HF patient re-admission. Comorbidities such as diabetes, N-terminal pro B-type natriuretic peptide/brain natriuretic peptide, chronic renal insufficiency, left ventricular ejection fraction, New York Heart Association cardiac function classification, and medication adherence were identified as primary predictors. The area under the receiver operating characteristic curve ranged from 0.547 to 0.962. Thirteen studies conducted internal validation, one study conducted external validation, and five studies performed both internal and external validation. Seventeen studies evaluated model calibration, while five studies assessed clinical feasibility. The presentation of the models was primarily in the form of nomograms. All studies had a high overall risk of bias. ConclusionMost predictive models for HF patient re-admission in China demonstrate good discrimination and calibration. However, the overall research quality is suboptimal. There is a need to externally validate and calibrate existing models and develop more stable and clinically applicable predictive models to assess the risk of HF patient re-admission and identify relevant patients for early intervention.
Objective To investigate the transferring methods of earthquake casualties accepted by the Department of Emergency, discuss the requirement for rescue materials in pre-hospital transference and provide information for transferring casualties after disasters in future. Methods Traumatic types and conditions of the wounded admitted by the Department of Emergency of West China Hospital within 3 weeks after Wenchuan earthquake,were collected. The characteristics of the wounded transferred by ambulances and helicopters were analyzed. Results Of the 2 338 wounded, ambulances transferred the most accounting for 60.56%, helicopter transferred 13.47%, and the other transport modes took up 25.96%. As for the macrotraumas, ambulances transferred more than helicopter and other transport mode did (Plt;0.05), while there was no statistical significance between helicopters and other transport modes(Pgt;0.05). Conclusion After the disaster, a field first-aid command system should be immediately established, casualties should be triaged concisely, an appropriate transference mode should be decided according to the degree of injuries and sufficient rescue materials should be provided based on different transference modes.
ObjectiveTo investigate the factors associated with unplanned readmission within 30 days after discharge in adult patients who underwent coronary artery bypass grafting (CABG) and to develop and validate a risk prediction model. MethodsA retrospective analysis was conducted on the clinical data of patients who underwent isolated CABG at the Nanjing First Hospital between January 2020 and June 2024. Data from January 2020 to August 2023 were used as a training set, and data from September 2023 to June 2024 were used as a validation set. In the training set, patients were divided into a readmission group and a non-readmission group based on whether they had unplanned readmission within 30 days post-discharge. Clinical data between the two groups were compared, and logistic regression was performed to identify independent risk factors for unplanned readmission. A risk prediction model and a nomogram were constructed, and internal validation was performed to assess the model’s performance. The validation set was used for validation. ResultsA total of 2 460 patients were included, comprising 1 787 males and 673 females, with a median age of 70 (34, 89) years. The training set included 1 932 patients, and the validation set included 528 patients. In the training set, there were statistically significant differences between the readmission group (79 patients) and the non-readmission group (1 853 patients) in terms of gender, age, carotid artery stenosis, history of myocardial infarction, preoperative anemia, and heart failure classification (P<0.05). The main causes of readmission were poor wound healing, postoperative pulmonary infections, and new-onset atrial fibrillation. Multivariable logistic regression analysis revealed that females [OR=1.659, 95%CI (1.022, 2.692), P=0.041], age [OR=1.042, 95%CI (1.011, 1.075), P=0.008], carotid artery stenosis [OR=1.680, 95%CI (1.130, 2.496), P=0.010], duration of first ICU stay [OR=1.359, 95%CI (1.195, 1.545), P<0.001], and the second ICU admission [OR=4.142, 95%CI (1.507, 11.383), P=0.006] were independent risk factors for unplanned readmission. In the internal validation, the area under the curve (AUC) was 0.806, and the net benefit rate of the clinical decision curve analysis (DCA) was >3%. In the validation set, the AUC was 0.732, and the DCA net benefit rate ranged from 3% to 48%. ConclusionFemales, age, carotid artery stenosis, duration of first ICU stay, and second ICU admission are independent risk factors for unplanned readmission within 30 days after isolated CABG. The constructed nomogram demonstrates good predictive power.