west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "再生" 234 results
  • CLINICAL APPLICATION OF BRIDGING OF THE NERVE DEFECTS BY USING VASCULARIZED NERVE SHEATH CANAL WITH LIVING SCHWANN S CELLS

    Basing on the experimental results, 48 nerve defects (with the length of 3-4 cm in 21 cases, 4.1-5cm in 25 cases and 6cm in 2 cases) were repaired clinically by using vaseularized nerve sheath canal with living Schwann s cells, 87.5 percent of them obtained good results. The advantages were: (1) The neural sheath had rich blood supply with resultant less scar from its healing; (2) The living Schwann s cells would secrete somatomedin to promote the reproduction of neural tissues; and (3) The useless neurofib...

    Release date:2016-09-01 11:38 Export PDF Favorites Scan
  • REGULATORY CONTROL OF CELL FACTORS ON REGENERATION OF LYMPHATIC VESSEL

    Abstract In order to investigate the mechanism ofregeneration of lymphatic vessel, the regulatory control of various cell factors on the new born bovine lymphatic endothelial cell (NBLEC) was observed. The cell factors used for investigation were bFGF, TGFα, EGF, TNFα and IL-1α. The results showed that bFGF, TGFα and EGF could stimulate NBLEC proliferation and DNA synthesis in dosage-dependent pattern. Combined use of either two factorsdid not increase the effect, and bFGF could increase cell migration and improve the activity of tissue plasminogen activator (t-PA). TNFα and IL-α inhibited NBLEC regeneration and DNA synthesis but TNFα improved the activity of t-PA. It could be concluded that growth factor and inflammatory factor had differentrole on regeneration of NBLEC, such as cell proliferation, migration and t-PA activity. bFGF was the main factor which improved the regenerationof lymphatic endothelial cell.

    Release date:2016-09-01 11:11 Export PDF Favorites Scan
  • STUDY ON BIOCOMPATIBILITY OF SKIN REPRODUCTIVE MEMBRANE

    OBJECTIVE To study the biocompatibility of skin reproductive membrane. METHODS According to ISO’s standards, the extractions of the skin reproductive membrane were prepared, and the acute systematic toxicity test, primary skin irritant test, cytotoxicity test, gene expression of type I collagen and fibronectin were detected to evaluate the biocompatibility of skin reproductive membrane. RESULTS All of those tests showed negative results. CONCLUSION The skin reproductive membrane has excellent biocompatibility in the level of the systematic, cellular and molecular biology.

    Release date:2016-09-01 10:25 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF THE EFFECT OF HYPERBARIC OXYGENATION ON REGENERATION OF PERIPHERAL NERVE

    Forty white rats, randomly equally divided into experimental and control groups, were used in this study. Sodium amytal was injected intraperitoneally, a crushing injury of the sciatic nerve was created in all of the 80 rats. The forty rats in the experimental group were treated with hyperbaric oxygenation while those rats in the control group received no treatement. From 2-8 weeks following the crushing injury of the sciatic nerves, it was observed that the treatment group showed an earlier recovery of nerve function and carlier response of leg muscles to electristimulation; less edema and exudation; marked proliferation of Schwann’s cells and more rapid recoveryof neurilemma, lastly. the number and rate of regeneration of neural axons were higher than that the control group.

    Release date:2016-09-01 11:39 Export PDF Favorites Scan
  • 系统性红斑狼疮继发纯红细胞再生障碍一例

    【摘要】 目的 提高对系统性红斑狼疮继发纯红细胞再生障碍(pure red cell aplasia,PRCA)的诊断和治疗认识。 方法 报道系统性红斑狼疮继发PRCA病例1例,观察患者对甲泼尼龙联合环孢素治疗的疗效。 结果 使用甲泼尼龙联合环孢素治疗后,系统性红斑狼疮继发PRCA患者血红蛋白恢复良好。 结论 大多数系统性红斑狼疮继发PRCA患者对糖皮质激素和免疫抑制剂联合治疗反应良好。

    Release date:2016-09-08 09:26 Export PDF Favorites Scan
  • Research progress of augmenter of liver regeneration in acute kidney injury

    Augmenter of liver regeneration (ALR) is a newly discovered cytokine that can promote liver regeneration and proliferation of damaged liver cells. In the renal tissue, ALR is mainly expressed in the cytoplasm of the medullary loops, collecting ducts and distal convoluted tubules in the renal medulla, and is low in the glomerular and cortical tubules. Various stimulation, such as ischemiacal, hypoxia, poisoning and inflammatory stimulation, can induce the expression of ALR in the epithelial cells of proximal tubule regeneration and the damaged areas of cortex, and participate in the repair process. Current studies have found that in acute kidney injury (AKI), exogenous ALR can protect renal tubular epithelial cells by inhibiting apoptosis of renal tubular epithelial cells, promoting proliferation of renal tubular epithelial cells, inhibiting the activities of inflammatory cells, and promoting the reduction of renal injury. This paper intends to review the basic characteristics of ALR and the pathogenesis of AKI, summarize the characteristics of the mechanism of ALR in AKI by combing the relevant literature on ALR and AKI in recent years, and provide knowledge reserve and direction reference for the in-depth study of ALR in kidney in the future.

    Release date:2021-10-26 03:34 Export PDF Favorites Scan
  • Research progress of Schwann cells regulating bone regeneration

    Objective To review the research progress on the role of Schwann cells in regulating bone regeneration. MethodsThe domestic and foreign literature about the behavior of Schwann cells related to bone regeneration, multiple tissue repair ability, nutritional effects of their neurotrophic factor network, and their application in bone tissue engineering was extensively reviewed. ResultsAs a critical part of the peripheral nervous system, Schwann cells regulate the expression level of various neurotrophic factors and growth factors through the paracrine effect, and participates in the tissue regeneration and differentiation process of non-neural tissues such as blood vessels and bone, reflecting the nutritional effect of neural-vascular-bone integration. ConclusionTaking full advantage of the multipotent differentiation ability of Schwann cells in nerve, blood vessel, and bone tissue regeneration may provide novel insights for clinical application of tissue engineered bone.

    Release date:2022-02-25 03:10 Export PDF Favorites Scan
  • Effect study of Sonic hedgehog overexpressed hair follicle stem cells in hair follicle regeneration

    ObjectiveTo determine the expression level of Sonic hedgehog (Shh) in the passage of hair follicle stem cells (HFSCs), analyze the effect of Shh overexpression on the proliferation activity of HFSCs, and explore the survival of HFSCs after Shh overexpression and its effect on hair follicle regeneration. MethodsHair follicles from the normal area (H1 group) and alopecia area (H2 group) of the scalp donated by 20 female alopecia patients aged 40-50 years old were taken, and the middle part of the hair follicle was cut under the microscope to culture, and the primary HFSCs were obtained and passaged; the positive markers (CD29, CD71) and negative marker (CD34) on the surface of the fourth generation HFSCs were identified by flow cytometry. The two groups of HFSCs were transfected with Shh-overexpressed lentivirus. Flow cytometry and cell counting kit 8 assay were used to detect the cell cycle changes and cell proliferation of HFSCs before and after transfection, respectively. Then the HFSCs transfected with Shh lentivirus were transplanted subcutaneously into the back of nude mice as the experimental group, and the same amount of saline was injected as the control group. At 5 weeks after cell transplantation, the expression of Shh protein in the back skin tissue of nude mice was detected by Western blot. HE staining and immunofluorescence staining were used to compare the number of hair follicles and the survival of HFSCs between groups. ResultsThe isolated and cultured cells were fusiform and firmly attached to the wall; flow cytometry showed that CD29 and CD71 were highly expressed on the surface of the cells, while CD34 was lowly expressed, suggesting that the cultured cells were HFSCs. The results of real-time fluorescence quantitative PCR and Western blot showed that the expression levels of Shh protein and gene in the 4th, 7th, and 10th passages of cells in H1 and H2 groups decreased gradually with the prolongation of culture time in vitro. After overexpression of Shh, the proliferation activity of HFSCs in the two groups was significantly higher than that in the blank group (not transfected with lentivirus) and the negative control group (transfected with negative control lentivirus), and the proliferation activity of HFSCs in H1 group was significantly higher than that in H2 group before and after transfection, showing significant differences (P<0.05). At 5 weeks after cell transplantation, Shh protein was stably expressed in the dorsal skin of each experimental group; the number of hair follicles and the expression levels of HFSCs markers (CD71, cytokeratin 15) in each experimental group were significantly higher than those in the control group, and the number of hair follicles and the expression levels of HFSCs markers in H1 group were significantly higher than those in H2 group, and the differences were significant (P<0.05). ConclusionLentivirus-mediated Shh can be successfully transfected into HFSCs, the proliferation activity of HFSCs significantly increase after overexpression of Shh, which can secrete and express Shh continuously and stably, and promote hair follicle regeneration by combining the advantages of stem cells and Shh.

    Release date:2023-07-12 09:34 Export PDF Favorites Scan
  • Regulatory role of long non-coding RNA in peripheral nerve injury and neural regeneration

    ObjectiveTo summarize the regulatory role of long non-coding RNA (lncRNA) in peripheral nerve injury (PNI) and neural regeneration.MethodsThe characteristics and mechanisms of lncRNA were summarized and its regulatory role in PNI and neural regeneration were elaborated by referring to relevant domestic and foreign literature in recent years.ResultsNeuropathic pain and denervated muscle atrophy are common complications of PNI, affecting patients’ quality of life. Numerous lncRNAs are upregulated after PNI, which promote the progress of neuropathic pain by regulating nerve excitability and neuroinflammation. Several lncRNAs are found to promote the progress of denervated muscle atrophy. Importantly, peripheral nerve regeneration occurs after PNI. LncRNAs promote peripheral nerve regeneration through promoting neuronal axonal outgrowth and the proliferation and migration of Schwann cells.ConclusionAt present, the research on lncRNA regulating PNI and neural regeneration is still in its infancy. The specific mechanism remains to be further explored. How to achieve clinical translation of experimental results is also a major challenge for future research.

    Release date:2021-08-30 02:26 Export PDF Favorites Scan
  • NEUROTROPHIC SUBSTANCE SECRETED BY CULTURED SCHWANN S CELL: ITS EXTRACTION AND BIOLOGICAL ACTIVITY IN VITRO

    Schwanns cell (SC) was isolated from sciatic nerve of adult rat with Wallerine degeneration. After culture, SC-serum free culture media (SCSFCM) was obtained. By ultrafiltration with PM-10 Amicon Membrane, electrophoresis with DiscPAGE,and electrical wash-out with Biotrap apparatus, D-band protein was isolated from the SC-SFCM. The D-band protein in the concentration of 25ng/ml could affect the survival of the spinal anterior horn neuron in vitro, prominently and itsactivity was not changed after being frozen. The molecular weight of the protein ranged from 43 to 67 Kd. The D-band protein might be a neurotrophic substancedifferent from the known SCderived neurotrophic factors (NTF). Its concentration with biological activity was high enough to be detected. The advantages of MTT in assessment of NTF activity were also discussed.

    Release date:2016-09-01 11:10 Export PDF Favorites Scan
24 pages Previous 1 2 3 ... 24 Next

Format

Content