Objective To review the current concepts of gene therapy approachesmediated by adenovirus vectors for bone trauma and bone disease. Methods The recent literature concerned gene therapy mediated by adenovirus vectors was reviewed, which provides new insights into the treatments of bone trauma and bone disease. Results Adenovirus vectors was efficient, achieved high expression after transduction, and could transfer genes to both replicating and nonreplicating cells, such as osteoblasts, osteoclasts, fibroblasts, chondrocytes, bone marrow stromal cells, etc. Gene therapy mediated by adenovirus vectors achieved affirmative results in enhancing bone union and in curing bone diseases, such as osteoporosis and rheumatoid arthritis. Conclusion Gene therapy mediatedby adenovirus offers an exciting avenue for treatment of bone trauma and bone diseases.
ObjectiveTo investigate the current status of research in gene therapy for retinitis pigmentosa (RP) from 2005 to 2024. MethodsThe literature related to gene therapy for RP included in the Web of Science Core Collection dataset from January 1, 2005 to September 15, 2024 was retrieved and screened. The bibliometrix package of R software was used to analyze the annual trend of the number of publications, citation frequency, distribution of countries/regions of the literature, and distribution of journals containing the articles. CiteSpace software was used to perform keyword clustering analysis and the keywords bursts analysis. ResultsA total of 209 articles were included. There was an overall fluctuating upward trend of annual publications from 2005 to 2024, with the highest number of publications in 2023 at 26 (12.4%, 26/209), and the lowest number of publications in 2006 at 2 (0.9%, 2/209). There was an overall increasing trend in the frequency of citations to relevant literature. Corresponding authors from the United States had the highest total number of publications with 98 (46.9%, 98/209). Among authors, Hauswirth from the University of Florida, USA, had the most with 25 (12.0%, 25/209). Among institutions, Columbia University, USA, had the most with 55 (26.3%, 55/209). Among journals, Mol Ther had the most with 25 (12.0%, 25/209), and it had the highest 2023 impact factor of 12.1. Keyword clustering analysis yielded eight valid clusters, namely #0 P23H, #1 AAV, #2 PDE6B, #3 CRB1, #4 RPGR, #5 antisense oligonucleotide, #6 NR2E3, and #7 NRL, which intersected with each other with good continuity. The keywords bursts analysis showed that the keyword with the longest emergence time was RNAi, followed by PDE and PDE6. USH2A, CRB1, CRISPR Cas9, base editing, and ORF15 were keywords that emerged in recent years and were continuously studied. ConclusionsRP gene therapy research literature has shown an increasing trend from 2005 to 2024, with the highest number of publications from research organizations and scholars in the United States. Currently, studies focus on RHO, PDE6B, CRB1, RPGR, NR2E3, and NRL gene. In recent years, there has been a gradual increase in studies on USH2A, CRB1 genes, and the RPGR ORF15 region. CRISPR Cas9 and base editing gene therapy strategies are being developed.
ObjectiveTo investigate the proliferation and apoptosis effects of adenovirus-mediated interleukin-24 (Ad-IL-24) gene on Karpas299 cells in vitro. MethodsThe Karpas299 cells were divided into blank control group, Ad-IL-24 group, and the adenovirus which carrying green fluorescent protein gene group (Ad-GFP group). Karpas299 cells of Ad-IL-24 group were infected by adding 200.0 μL Ad-IL-24, Karpas299 cells of Ad-GFP group were infected by adding 200.0 μL Ad-GFP, but Karpas299 cells of blank control group were treated by adding 200.0 μL PBS. Cells' proliferation inhibition rates of 3 groups were detected by cell counting kit (CCK-8) method at 12, 24, and 48 hours after treatment, respectively, and the cells' apoptosis rates of 3 groups were detected by flow cytometry at 48 hours after treatment. ResultsAd-IL-24 can suppress the growth of Karpas299 cells, and the inhibition rate increased over time. Compared with Ad-GFP group at the same time, the cell' proliferation inhibition rate of Ad-IL-24 group was higher at 12, 24, and 48 hours after treatment (P<0.05). In addition, the cells' apoptosis rate of Ad-IL-24 group was higher than those of Ad-GFP group and blank control group at 48 hours after treatment (P<0.05). ConclusionAd-IL-24 can suppress the growth of Karpas299 cells and induce the apoptosis of it.
Objective To explore the effect of age and gene therapyon the differentiation of marrow mesenchymal stem cells (MSCs) of the rats. Methods MSCs from the young (1-month-old), adult (9-month-old), and the aged(24monthold) rats were expanded in culture and infected with adenovirus mediated human bone morphogenetic protein 2 gene (Ad-BMP-2). The expression of BMP-2 and osteoblastic markers such as alkaline phosphatase(ALP), collagen Ⅰ(Col Ⅰ), bone sialoprotein(BSP) and osteopontin(OPN) were assayed during the process of differentiation. Their abilities to induce ectopic bone formation in nude mice were also tested. Results There was no significant difference in the expression of BMP-2 among the 3 groups. ALP activity assay and semi-quantitative reverse transcription polymerase chain reaction(RT-PCR) demonstrated that there were no significant differences in the expression of osteoblastic markers ALP, Col-Ⅰ, OPN and BSP amongthe 3 groups. Histomorphometric analysis indicated that there were no significant differences in the volume of the newly formed ectopic bones in nude mice amongthe 3 groups. Conclusion MSCs obtained from the aged ratscan restore their osteogenic activity following human BMP-2 gene transduction, therefore provides an alternative to treating the aged bone disease.
Objective To explore the effects of overexpression of human tissue inhibitors of metalloproteinase-1 (hTIMP-1) on proliferation of human liver cancer cell line HepG2 in vitro. Methods A recombinant adenoviral vector containing full-length cDNA of hTIMP-1 was generated and transfected into HepG2. The viral titer was checked by measuring GFP, and the expression of hTIMP-1 in vitro was detected by the techniques of Western blot and semi-quantitative RT-PCR. The ultrastructure was observed by transmission electron microscope and the effects of overexpression of hTIMP-1 on proliferation of HepG2 in vitro was analyzed by MTT assay and growth curve. Results The resultant AdhTIMP-1 was successfully constructed and the expression of hTIMP-1 was detected by Western blot and RT-PCR. The growth and proliferation of HepG2, which had been transfected with AdhTIMP-1, was significantly inhibited. Conclusion The proliferation of HepG2 was markedly inhibited by recombinant adenovirus-mediated overexpression of hTIMP-1, which may pave the way for further application in liver gene therapy.
Objective To construct recombinant lentiviral expression vectors of porcine transforming growth factor β1 (TGF-β1) gene and transfect bone marrow mesenchymal stem cells (BMSCs) so as to provide TGF-β1 gene-modified BMSCs for bone and cartilage tissue engineering. Methods The TGF-β1 cDNA was extracted and packed into lentiviral vector, and positive clones were identified by PCR and gene sequencing, then the virus titer was determined. BMSCs were isolated frombone marrow of the 2-month-old Bama miniature pigs (weighing 15 kg), and the 2nd and 3rd generations of BMSCs wereharvested for experiments. BMSCs were then transfected by TGF-β1 recombinant lentiviral vectors (TGF-β1 vector group)respectively at multi pl icity of infection (MOI) of 10, 50, 70, 100, and 150; then the effects of transfection were detected bylaser confocal microscope and Western blot was used to determine the optimal value of MOI. BMSCs transfected by empty vector (empty vector group) and non-transfected BMSCs (non-transfection group) were used as control group. RT-PCR, immunocytochemistry, and ELISA were performed to detect the expressions of TGF-β1 mRNA, TGF-β1 protein, and collagen type II. Results Successful construction of recombinant lentiviral vectors of porcine TGF-β1 gene was identified by PCR and gene sequencing, and BMSCs were successfully transfected by TGF-β1 recombinant lentiviral vectors. Green fluorescence was observed by laser confocal microscope. Western blot showed the optimal value of MOI was 70. The expression of TGF-β1 mRNA was significantly higher in TGF-β1 vector group than in empty vector group and non-transfection group (P lt; 0.05). Immunocytochemistry results revealed positive expression of TGF-β1 protein and collagen type II in BMSCs of TGF-β1 vector group, but negative expression in empty vector group and non-transfection group. At 21 days after transfection, high expression of TGF-β1 protein still could be detected by ELISA in TGF-β1 vector group. Conclusion TGF-β1 gene can be successfully transfected into BMSCs via lentiviral vectors, and long-term stable expression of TGF-β1 protein can be observed, prompting BMSCs differentiation into chondrocytes.
Objective To investigate the effects of adenovirus-mediated melanoma differentiation-associated gene-7 (mda-7)/IL-24 and/or adriamycin (ADM) on transplanted human hepatoma in nude mice and to explore a new way for hepatoma gene therapy combined with chemotherapy. Methods The recombinant adenovirus vector carrying Ad.mda-7 was constructed; Ad.mda-7 and/or ADM were injected into the tumor-bearing mice. Their effects on the growth of the tumor and the survival time of the mice were observed. The expressions of VEGF and TGF-β1 were detected by an immunohistochemistry method. Results Ad.mda-7 was constructed and expressed in vivo successfully. Compared with other three groups 〔control group (43.4±1.67) d, ADM group (64.2±4.14) d, Ad.mda-7 group (61.4±1.67) d〕, the mice treated with Ad.mda-7 combined with ADM had longer average survival time 〔(83.8±4.82) d, P<0.01〕; the average size of tumor treated with Ad.mda-7 combined with ADM diminished significantly compared with that treated with ADM or Ad.mda-7 separately (P<0.01). VEGF and TGF-β1 expressions of Ad.mda-7 group were (56.2±7.7)%, (35.2±4.5)%, respectively, and were lower than those in ADM group (VEGF: P<0.05; TGF-β1: P<0.01). VEGF expression of Ad.mda-7+ADM group was (37.3±5.0)%, and was significantly lower than that in other three groups (P<0.01). TGF-β1 expression of Ad.mda-7+ADM group was (31.2±3.1)% and significantly lower than that in control group and ADM group (P<0.01), however, there was no significant difference compared with Ad.mda-7 group (Pgt;0.05). Conclusion Ad.mda-7 combined with ADM has b antitumor potency and synergistic effects and suppresses the growth of human HCC xenograft in nude mice, possibly by inducing the apoptosis of hepatoma cell lines and suppressing tumor angiogenesis.
ObjectiveTo explore the new gene therapy method for tumor, the recombinant Caspase3 gene (rcaspase3) eukaryotic expression plasmid was constructed by molecular biologic method. MethodsThe eukaryotic expression plasmid pcDNA3.1(+)/rCaspase3 was constructed by rearrangement of the large subunit and small subunit of Caspase3 and it was transfected into pancreatic carcinoma cells(PCⅡ). After being transfected, the expression of rCaspase3 mRNA in pancreatic carcinoma cells was detected by RTPCR and it’s apoptotic activity was detected by FCM. ResultsThe sequence of rCaspase3 showed that the recombinant molecules (rCaspase3) now had its’ small subunit preceding its’ large subunit. After pancreatic carcinoma cells being transfected with the pcDNA3.1(+)/rCaspase3 by liposomes, a 894 bp strap was observed by RTPCR. No strap was found in control groups. A transparent hypodiploid karyotype peak was found by FCM.ConclusionThe plasmid of pcDNA3.1(+)/rCaspase3 has been constructed successfully. rCaspase3 has apoptotic activity and can be used as target gene in gene therapy for pancreatic carcinoma.
Objective To investigate the effect of angiostatin gene combined with somastatin on inhibiting proliferation of human pancreatic cancer cell BXPC-3 and endothelial cell of vascular ECV-304 and on inducing their apoptosis in vitro. Methods The pcDNA3/angio was transfected BXPC-3 by liposome-mediated gene transfer method. RT-PCR and Western blot were used to detect the expression of angiostatin gene. In vitro, MTT and flow cytometry (FCM) were used to detect whether angiostatin gene combined with somastatin could effect the growth inhibition of BXPC-3 and ECV-304 cells. Results Angiostatin was expressed and secreted by transfected BXPC-3. The growth of BXPC-3 was inhibited by certain concentration of somatostatin (≥10 μg/ml, P<0.01), which was dependent on the dose of somatostatin in a concentration extent; Simultaneity apoptosis was induced (P<0.01). But the growth of ECV-304 was not inhibited with somatostation (Pgt;0.05). Angiostatin could inhibit the growth of ECV-304 and induced apoptosis (P<0.01), but it had no effect on the growth of BXPC-3 (Pgt;0.05). Angiostation gene combined with somatostation could inhibit the growth both of BXPC-3 and ECV-304 (P<0.01), and induce apoptosis of them (P<0.01); but the effect couldn’t be additived. Conclusions ①Somatostatin directly inhibits the proliferation of human pancreatic cancer cells and induces apoptosis, but it doesn’t directly inhibit angiogenesiso of human pancreatic cancer. ②Angiostatin specially inhibits the proliferation of endothelial cell of vascular and induces apoptosis. Angiostatin could inhibit angiogenesis of human pancreatic cancer to induce necrosis of cancer cell.
Objective To transfect bone marrow mesenchymal stem cells (BMSCs) of rats by recombinant adenovirus Ad-human matrix metalloproteinase 1 (hMMP-1) in vitro so as to lay the experimental foundation for the treatment of liver fibrosis with a combination of BMSCs and hMMP-1 gene transplantation. Methods BMSCs were isolated from bone marrow of 2-3 weeks old Sprague Dawley rats by whole bone marrow adherence method and identified, then transfected by recombinant adenovirus Ad-hMMP-1 carrying enhanced green fluorescent protein (EGFP) marker in vitro. The green fluorescent expression was observed by fluorescence microscope and the transfection efficiency was detected by flow cytometry to determine the optimum multiplicity of infection (MOI). BMSCs at passage 3 were divided into 3 groups: untransfected BMSCs group (group A), Ad-EGFP transfected BMSCs group (group B), and Ad-hMMP-1-EGFP transfected BMSCs group (group C); the gene and intracellular protein of hMMP-1 were detected by RT-PCR and Western blot; the ELISA assay was used to detect the supernatant protein expression, and the hMMP-1 activity was measured by fluorescent quantification kit. Results The green fluorescent was observed in BMSCs transfected by recombinant adenovirus at 24 hours after transfection; the fluorescence intensity was highest at 72 hours; and the optimum MOI was 200. The cells of 3 groups entered the logarithmic growth phase on the 3rd day and reached plateau phase on the 6th day by MTT assay; no significant difference was found in the cell proliferation rate among 3 groups (P gt; 0.05). RT-PCR, Western blot, and ELISA assay showed high expressions of the hMMP-1 gene and protein in group C, but no expression in groups A and B. The hMMP-1 activity was 1.24 nmol/(mg · min) in group C, but hMMP-1 activity was not detectable in groups A and B. Conclusion The exogenous hMMP-1 gene is successfully transfected into BMSCs of rats via recombinant adenovirus and can highly express, which lays the experimental foundation for the treatment of liver fibrosis with a combination of BMSCs and hMMP-1 gene transplantation.