Objective To review the application advancements of ATP-binding cassette (ABC) transporter in medical research.Methods Relevant literatures about the applications of ABC families in medical research were reviewed. Results ABC families mainly took roles in transporting substances across cell membrane. Some of them were useful for the prediction of drug resistance and the prognosis of malignant tumors. Others were target s for molecular researches. Their expressions or mutations might be related with the occurrence of diseases. Conclusion ABC families are very important in the diagnosis and therapy for diseases. Thus they are very promising tools for future medical research.
Objective To dynamically study the formation of multidrug resistance(MDR) of human hepatocellular carcinoma cell SMMC-7721 induced by Adriamycin (ADM) and the role of multidrug resistance-associated protein(MRP) in its mechanisms.Methods Hepatocellular carcinoma cell SMMC-7721 was cultured in RPMI-1640 medium containing ADM with progressively increased concentration or directly cultured in medium containing different concentrations of ADM. Resistant index of drug-resistant variants of SMMC-7721 cell was determined by drawing cell dosage-reaction curves.Levels of MRP mRNA expression were detected by reverse transcription-polymerase chain reaction(RTPCR). Intracellular rubidomycin(DNR) concentration was examined by flow cytometry(FCM).Results With progressive increasing of ADM concentration in medium resistant index and levels of MRP mRNA expression were correspondingly increased but intracellular DNR concentration was markly reduced. When parental cells were directly cultured in medium containing different concentrations of ADM, the higher the ADM concentration, the higher the level of MRP mRNA expression, but intracellular DNR concentration was kept at the similar high level and most cells died. Conclusion ADM may progressively induce SMMC-7721 cell resistant to multiple chemotherapeutic drugs with reduced intracellular DNR accumulation associated with the overexpression of MRP gene.
Objective To study the effects of survivin antisense RNA on SGC7901 cell’s apoptosis and chemosensitivity to taxotere, and to investigate its effect on the expression of multi-drug resistance gene-1 (MDR-1). Methods Survivin antisense eukaryotic vector anti-pcDNA3-svv was transfected into SGC7901 cell lines by lipofectamine and positive clones were screened out then. Survivin protein and MDR-1 mRNA were measured by western blot and RT-PCR, respectively. Apoptosis that was induced by anti-pcDNA3-svv was observed by electronic microscope, and the sensitivity of SGC7901 cell to taxotere was examined by MTT. Results The expressions of survivin protein and MDR-1 mRNA in transfected SGC7901 cells both decreased more significantly than that of non-transfected cells (P<0.05, P<0.01), and the indices of MDR of transfection group and non-transfection group were 0.196±0.013 and 3.126±0.019, respectively, at the late phase of apoptosis, which had a significant difference between each other (P<0.01), IC50 of the transfected cells to taxotere was (16.7±1.98) ng/ml and that of the non-transfected cells was (55.7±1.89) ng/ml, which also had a significant difference (P<0.01). Conclusion Surivivin antisense RNA could induce the apoptosis of SGC7901 cancer cell line and could increase the cells’ sensitivity to taxotere, which may help to reverse drug resistance.
This paper aims to study the effects of traditional Chinese medicine Euphorbia esula on multidrug resistant human gastric cancer cells in the cell proliferation, migration, invasion and apoptosis, and to study the apoptosis-inducing pathway. Different dilutions of Euphorbia esula extract were used to process human multidrug resistant gastric cancer SGC7901/ADR cells. Cell proliferation inhibition phenomenon was determined by MTT experiment. Nuclear morphological changes of apoptotic cells and apoptotic indexes were observed and determined by Hochest33528 staining followed with fluorescence microscope observing. Flow cytometry was used to detect cell apoptosis rate. Cell migration and invasion ability were observed and determined by Transwell method. Spectrophotometry was used to detect caspase-3 and caspase-9 enzyme activity. Western blotting was used to detect subcellular distribution of cytochrome c. The results showed that Euphorbia esula extract had obvious inhibition effect on proliferation of gastric cancer multidrug resistant SGC7901/ADR cells, which was time- and concentration-dependent. After processing multidrug resistant gastric cancer SGC7901/ADR cells with Euphorbia esula extract, the apoptotic index and apoptosis rate were significantly increased than those in the control group, which showed a time- and dose-dependent mode; but if a caspase inhibitor was added, apoptosis index was not obviously increased. Transwell method showed that migration and invasion ability of the Euphorbia esula extract-processed SGC7901/ADR cells dropped significantly. Spectrophotometry showed that in Euphorbia esula extract-processed SGC7901/ADR cells, caspase-3 and caspase-9 expression were increased, which had significant differences with the control group. Western blotting test showed that the distribution of cytochrome c decreased in mitochondria, while increased in the cytoplasm (i.e., cytochrome c escaped from mitochondria to the cytoplasm). In conclusion, Euphorbia esula extract could inhibit the proliferation, migration and invasion, and induce apoptosis in human gastric cancer multidrug resistant SGC7901/ADR cells; and cytochrome c, caspase-9 and caspase-3 might be involved in cell apoptosis induced by Euphorbia esula extract, suggesting endogenous or mitochondrial apoptotic pathway.
【Abstract】 Objective To detect the expression of lung resistance protein (LRP) and investigate its significance in pancreatic carcinoma cell lines (SW1990, PCT-2, PCT-3, PCT-4, Aspc-1, Capan-1, Mia-PaCa-2 and Panc-1). Methods Reverse transcription PCR (RT-PCR) and immunocytochemistry (ICC) were carried out to investigate the expression of LRP. Results LRP mRNA was absent in PCT-2 cell line by RT-PCR. Mild to moderate expression level was found in other pancreatic carcinoma cell lines. PCT-4, Aspc-1 and Panc-1 presented the highest LRP mRNA expression level, in contrast, SW1990, PCT-3, Capan-1 and Mia-PaCa-2 showed moderate LRP mRNA expression. The median value was 0.56±0.33. LRP was further validated by ICC. Absent to weak protein expression of LRP was found in PCT-2 and PCT-3. Overexpressed LRP was present in SW1990, Capan-1 and Aspc-1, furthermore, the highest expression of LRP was found in Panc-1, Mia-PaCa-2 and PCT-4 cell lines. Conclusion All these data showed that LRP might play an important role in multidrug resistance of pancreatic carcinoma.
ObjectiveTo establish multidrugresistance cell substrain of human hepatocellular carcinoma and to investigate its characteristics.MethodsSMMC7721 cell strain was cultured in Adriamycin(ADM). The multidrugresistance cell substrain SMMC7721/ADM was harvested after a long period of culture by gradually increasing the concentration of ADM and its characteristics were investigated. Results①The drug resistance of SMMC7721/ADM to ADM increased by 33.3 times, to Vincristine 16.8 times, to Diamminedichloroplatinum 2.8 times. ②The drug resistance cell substrain had almost the same growth velocity as its parental generation. The doubling time was 32.0 hours and 30.5 hours respectively. They had the analogous growth curves. ③The obvious difference between the drug resistance cell substrain and its parental generation was that the former’s microvilli became thick, short and scattered by scanning and transmitting electron microscopy. ④The multidrug resistance cell substrain kept the characteristics of hepatocellular carcinoma, it could be transplanted into the subcutaneous tissue of nude mice. ⑤The drug resistance of the cell substrain reduced to 28.0% and 9.2%after removal of the drug for 1 month and 2 months respectively, its drug resistance could remain stable (35.4 times) after 2 months of culture in ADM (0.04 μg/ml).ConclusionThe SMMC7721/ADM cell substrain has the stable fundamental characteristics of a drug resistance cell strain.
Objective To investigate the effect of phosphorothioate antisense oligonucleotides(AS-ODN) on suppressing multidrug resistance-associated protein gene(MRP) in human drug-resistant hepatocellular carcinoma cell line (SMMC-7721/ADM). Methods Cell line was transfected with a synthetic S-ODN complementary to the coding region of MRP mRNA, Lipofectamine acting as carrier. The drug sensitivity was measured by MTT assay. The expression of MRP mRNA was detected by RT-PCR and the expression of P190 was detected by flow cytometry. Results AS-ODN inhibited expression of MRP mRNA and P190 and promoted sensitivity to daunorubicinum and adriamycinum. Conclusion AS-ODN can reduce the expression of MRP gene. MDR caused by MRP is an important cause of multidrug resistance of SMMC-7721/ADM.
ObjectiveTo construct the recombinant adenovirus vector carrying antisense multidrug resistanceassociated protein (MRP) and transfect the human drugresistant hepatocellular carcinoma cell line(SMMC7721/ADM). MethodsThe fragment of MRP gene encoding 5′region was cloned reversely into the shuttle plasmid pAdTrackCMV, with the resultant plasmid and the backbone plasmid pAdEasy1,the homologous recombination took place in the bacteria and the recombinant adenoviral plasmid was generated. The adenoviruses were packaged and amplified in 293 cells. Then the cell line of SMMC7721/ADM was transfected with the resultant adenoviruses.ResultsThe recombinant adenovirus vector carrying antisense MRP was constructed successfully. The viral titer was 2.5×109 efu/ml, and more than 90% SMMC7721/ADM cells could be transfected when the multiplicity of infection(MOI) was 100. ConclusionThe recombinant adenovirus vector constructed by us could introduce the antisense MRP into the human drugresistant hepatocellular cell line effectively, which would provide experimental basis for the mechanisms and reversal methods of the multidrug resistance in human hepatocellular carcinoma.