Electrocardiogram (ECG) is a noninvasive, inexpensive, and convenient test for diagnosing cardiovascular diseases and assessing the risk of cardiovascular events. Although there are clear standardized operations and procedures for ECG examination, the interpretation of ECG by even trained physicians can be biased due to differences in diagnostic experience. In recent years, artificial intelligence has become a powerful tool to automatically analyze medical data by building deep neural network models, and has been widely used in the field of medical image diagnosis such as CT, MRI, ultrasound and ECG. This article mainly introduces the application progress of deep neural network models in ECG diagnosis and prediction of cardiovascular diseases, and discusses its limitations and application prospects.
The diagnosis of hypertrophic cardiomyopathy (HCM) is of great significance for the early risk classification of sudden cardiac death and the screening of family genetic diseases. This research proposed a HCM automatic detection method based on convolution neural network (CNN) model, using single-lead electrocardiogram (ECG) signal as the research object. Firstly, the R-wave peak locations of single-lead ECG signal were determined, followed by the ECG signal segmentation and resample in units of heart beats, then a CNN model was built to automatically extract the deep features in the ECG signal and perform automatic classification and HCM detection. The experimental data is derived from 108 ECG records extracted from three public databases provided by PhysioNet, the database established in this research consists of 14,459 heartbeats, and each heartbeat contains 128 sampling points. The results revealed that the optimized CNN model could effectively detect HCM, the accuracy, sensitivity and specificity were 95.98%, 98.03% and 95.79% respectively. In this research, the deep learning method was introduced for the analysis of single-lead ECG of HCM patients, which could not only overcome the technical limitations of conventional detection methods based on multi-lead ECG, but also has important application value for assisting doctor in fast and convenient large-scale HCM preliminary screening.
Lorenz plot (LP) method which gives a global view of long-time electrocardiogram signals, is an efficient simple visualization tool to analyze cardiac arrhythmias, and the morphologies and positions of the extracted attractors may reveal the underlying mechanisms of the onset and termination of arrhythmias. But automatic diagnosis is still impossible because it is lack of the method of extracting attractors by now. We presented here a methodology of attractor extraction and recognition based upon homogeneously statistical properties of the location parameters of scatter points in three dimensional LP (3DLP), which was constructed by three successive RR intervals as X, Y and Z axis in Cartesian coordinate system. Validation experiments were tested in a group of RR-interval time series and tags data with frequent unifocal premature complexes exported from a 24-hour Holter system. The results showed that this method had excellent effective not only on extraction of attractors, but also on automatic recognition of attractors by the location parameters such as the azimuth of the points peak frequency (APF) of eccentric attractors once stereographic projection of 3DLP along the space diagonal. Besides, APF was still a powerful index of differential diagnosis of atrial and ventricular extrasystole. Additional experiments proved that this method was also available on several other arrhythmias. Moreover, there were extremely relevant relationships between 3DLP and two dimensional LPs which indicate any conventional achievement of LPs could be implanted into 3DLP. It would have a broad application prospect to integrate this method into conventional long-time electrocardiogram monitoring and analysis system.
Objective To conduct a systematic review on the Electrocardiogram (ECG) changes in the workers exposed to high temperatures by means of meta-analysis.Methods The retrospective cohort studies on the relationship between high temperature and ECG abnormalities published from 1990 to May 2009 were searched in CNKI, VIP, WanFang database and CBM database. The literatures meeting the inclusive criteria were selected, the quality was assessed, the data were extracted, and the meta-analyses were conducted with RevMan 4.2.2 software. Results A total of 20 studies were included. The results of meta-analyses showed: the ECG abnormality rate of the high-temperature group was obviously superior to that of the control group with significant difference (OR=2.76, 95%CI 2.37 to 3.20, Plt;0.000 01). The high-temperature severely affected left ventricular hypertrophy (OR=3.49, 95%CI 2.83 to 4.31, Plt;0.000 01), sinus bradycardia (OR=2.83, 95%CI 2.33 to 3.43, Plt;0.000 01), and changes in ST-T segment (OR=2.63, 95%CI 1.48 to 4.68, P=0.000 10), which indicated that the abnormal changes of ECG, such as left ventricular hypertrophy, sinus tachycardia, sinus bradycardia, and changes in ST-T segment could be the sensitive indexes to monitor cardiovascular disease of workers exposed to high-temperature. Conclusion The incidence of ECG abnormalities caused by high-temperature operation is obviously superior to that of the control group, so it is required to strengthen the health monitoring and labor protection for the workers exposed to high temperature.
Objective To explore how to differentiate the epilepsy and syncope in order to minimize the misdiagnosis. Methods Retrospectively analyzed the medical record of 6 cases which were misdiagnosed as epilepsy or syncope during April 2008 to September 2012 and reviewed the literatures about the differential diagnosis. Results Among the clinical characteristics, the ictal positional tone and loss of consciousness as well as the duration of postictal confusion are very important to the differential diagnosis. The ictal EEG shows highly rhythmic abnormal discharges when epileptic seizures occur. However, the ictal EEG would become slower and flatler during syncope. Conclusions When the automomic disorder and signs such as chest distress, arrhythmia. appear, the causes should not be limited in the cardiac diseases, the functional or structural abnormalities of the nervous system innervating the heart should also be considered; on the contrary, convulsions might not only due to the abnormal electrical activity in the brain, but syncope.
Inferior myocardial infarction is an acute ischemic heart disease with high mortality, which is easy to induce life-threatening complications such as arrhythmia, heart failure and cardiogenic shock. Therefore, it is of great clinical value to carry out accurate and efficient early diagnosis of inferior myocardial infarction. Electrocardiogram is the most sensitive means for early diagnosis of inferior myocardial infarction. This paper proposes a method for detecting inferior myocardial infarction based on densely connected convolutional neural network. The method uses the original electrocardiogram (ECG) signals of serially connected Ⅱ, Ⅲ and aVF leads as the input of the model and extracts the robust features of the ECG signals by using the scale invariance of the convolutional layers. The characteristic transmission of ECG signals is enhanced by the dense connectivity between different layers, so that the network can automatically learn the effective features with strong robustness and high recognition, so as to achieve accurate detection of inferior myocardial infarction. The Physikalisch Technische Bundesanstalt diagnosis public ECG database was used for verification. The accuracy, sensitivity and specificity of the model reached 99.95%, 100% and 99.90%, respectively. The accuracy, sensitivity and specificity of the model are also over 99% even though the noise exists. Based on the results of this study, it is expected that the method can be introduced in the clinical environment to help doctors quickly diagnose inferior myocardial infarction in the future.
Early accurate detection of inferior myocardial infarction is an important way to reduce the mortality from inferior myocardial infarction. Regrading the existing problems in the detection of inferior myocardial infarction, complex model structures and redundant features, this paper proposed a novel inferior myocardial infarction detection algorithm. Firstly, based on the clinic pathological information, the peak and area features of QRS and ST-T wavebands as well as the slope feature of ST waveband were extracted from electrocardiogram (ECG) signals leads Ⅱ, Ⅲ and aVF. In addition, according to individual features and the dispersion between them, we applied genetic algorithm to make judgement and then input the feature with larger degree into support vector machine (SVM) to realize the accurate detection of inferior myocardial infarction. The proposed method in this paper was verified by Physikalisch-Technische Bundesanstalt (PTB) diagnostic electrocardio signal database and the accuracy rate was up to 98.33%. Conforming to the clinical diagnosis and the characteristics of specific changes in inferior myocardial infarction ECG signal, the proposed method can effectively make precise detection of inferior myocardial infarction by morphological features, and therefore is suitable to be applied in portable devices development for clinical promotion.
In order to solve the problem that the early onset of paroxysmal atrial fibrillation is very short and difficult to detect, a detection algorithm based on sparse coding of Riemannian manifolds is proposed. The proposed method takes into account that the nonlinear manifold geometry is closer to the real feature space structure, and the computational covariance matrix is used to characterize the heart rate variability (RR interval variation), so that the data is in the Riemannian manifold space. Sparse coding is applied to the manifold, and each covariance matrix is represented as a sparse linear combination of Riemann dictionary atoms. The sparse reconstruction loss is defined by the affine invariant Riemannian metric, and the Riemann dictionary is learned by iterative method. Compared with the existing methods, this method used shorter heart rate variability signal, the calculation was simple and had no dependence on the parameters, and the better prediction accuracy was obtained. The final classification on MIT-BIH AF database resulted in a sensitivity of 99.34%, a specificity of 95.41% and an accuracy of 97.45%. At the same time, a specificity of 95.18% was realized in MIT-BIH NSR database. The high precision paroxysmal atrial fibrillation detection algorithm proposed in this paper has a potential application prospect in the long-term monitoring of wearable devices.