Objective To study and compare the clinical efficacy between intravitreal conbercept injection and (or) macular grid pattern photocoagulation in treating macular edema secondary to non-ischemic branch retinal vein occlusion (BRVO). Methods Ninety eyes of 90 patients diagnosed as macular edema secondary to non-ischemic BRVO were enrolled in this study. Forty-eight patients (48 eyes) were male and 42 patients (42 eyes) were female. The average age was (51.25±12.24) years and the course was 5–17 days. All patients were given best corrected visual acuity (BCVA), intraocular pressure, slit lamp with preset lens, fluorescence fundus angiography (FFA) and optic coherent tomography (OCT) examination. The patients were divided into conbercept and laser group (group Ⅰ), laser group (group Ⅱ) and conbercept group (group Ⅲ), with 30 eyes in each group. The BCVA and central macular thickness (CMT) in the three groups at baseline were statistically no difference (F=0.072, 0.286;P=0.930, 0.752). Patients in group Ⅰ received intravitreal injection of 0.05 ml of 10.00 mg/ml conbercept solution (conbercept 0.5 mg), and macular grid pattern photocoagulation 3 days later. Group Ⅱ patients were given macular grid pattern photocoagulation. Times of injection between group Ⅰ and Ⅲ, laser energy between group Ⅰ and Ⅱ, changes of BCVA and CMT among 3 groups at 1 week, 1 month, 3 months and 6 months after treatment were compared. Results Patients in group Ⅰ and Ⅲ had received conbercept injections (1.20±0.41) and (2.23±1.04) times respectively, and 6 eyes (group Ⅰ) and 22 eyes (group Ⅲ) received 2-4 times re-injections. The difference of injection times between two groups was significant (P<0.001). Patients in group Ⅱ had received photocoagulation (1.43±0.63) times, 9 eyes had received twice photocoagulation and 2 eyes had received 3 times of photocoagulation. The average laser energy was (96.05±2.34) μV in group Ⅰ and (117.41±6.85) μV in group Ⅱ, the difference was statistical significant (P=0.003). BCVA improved in all three groups at last follow-up. However, the final visual acuity in group Ⅰ and group Ⅲ were better than in group Ⅱ (t=4.607, –4.603;P<0.001) and there is no statistical significant difference between group Ⅲ and group Ⅰ (t=–0.802,P=0.429). The mean CMT reduced in all three groups after treating for 1 week and 1 month, comparing that before treatment (t=–11.855, –10.620, –10.254;P<0.001). There was no statistical difference of CMT between group Ⅰand Ⅲ at each follow up (t=0.404, 1.723, –1.819, –1.755;P=0.689, 0.096, 0.079, 0.900). CMT reduction in group Ⅰ was more than that in group Ⅱ at 1 week and 1 month after treatments (t=–4.621, –3.230;P<0.001, 0.003). The CMT in group Ⅲ at 3 month after treatment had increased slightly comparing that at 1 month, but the difference was not statistically significant (t=1.995,P=0.056). All patients had no treatment-related complications, such as endophthalmitis, rubeosis iridis and retinal detachment. Conclusions Intravitreal conbercept injection combined with macular grid pattern photocoagulation is better than macular grid pattern photocoagulation alone in treating macular edema secondary to non-ischemic BRVO. Combined therapy also reduced injection times comparing to treatment using conbercept injection without laser photocoagulation.
Anti-vascular dndothelial growth factor (VEGF) drugs have open up a new treatment channel for ocular neovascular diseases. A lots of clinical data has proved that anti-VEGF drugs are effective and safe. But we should also notice that long-term and excessive usage of anti-VEGF drugs brings some new problems and complications, and even affect the normal ocular physiological process of the angiogenesis and retinal blood flow. So, it is necessary to pay attention to the problems and potential risks of excessive usage of anti-VEGF therapies for ocular neovascular disease.
ObjectiveTo systematically review the efficacy and safety of photodynamic therapy (PDT) and intravitreal vascular endothelial growth factor (VEGF) inhibitors in the treatment of polypoidal choroidal vasculopathy (PCV), and to investigate the primary treatment tentatively. MethodsA systematic search of Pubmed, Embase, the Cochrane Library and the Wanfang Data was performed to identify all comparative studies that compared the outcomes of PDT alone, intravitreal VEGF inhibitors alone and combined intravitreal VEGF inhibitors and photodynamic therapy. Outcomes of interest included the regression and recurrence rate of polypoidal lesions, best corrected visual acuity (BCVA), central retinal thickness (CRT), therapeutic times, and the occurrence rate of adverse events. 2 randomized controlled trials (RCT) and 19 non-RTCs were identified. According to treatment methods, the data extracted was classified to 3 groups, analyzed with odds ratio (OR), weighted mean difference (WMD) and 95%confidence interval (95%CI). ResultsMeta-analysis suggests that the regression rate of polypoidal lesions (OR=0.34, 0.07; 95%CI=0.13-0.88, 0.02-0.36) and BCVA (WMD=0.25, 0.11; 95%CI=0.14-0.36, 0.01-0.21) in combined therapy group were significantly better than those in PDT group and intravitreal VEGF inhibitors group (P < 0.05). The recurrence rate of polypoidal lesions in PDT group was significantly lower than intravitreal VEGF inhibitors group (OR=0.35, 95%CI=0.16-0.74, P=0.006). BCVA (P=0.025) and the occurrence rate of adverse events (OR=60.36, 95%CI=6.04-603.50, P=0.000 5) in intravitreal VEGF inhibitors group were significant better than PDT group. ConclusionsCombined treatment appeared to be superior to PDT alone or intravitreal VEGF inhibitors alone. Combined treatment takes priority over all others in the primary treatment of PCV.
ObjectiveTo observe the effect of preoperative intravitreal ranibizumab injection (IVR) on the operation duration of vitrectomy and postoperative vision for the treatment of proliferative diabetic retinopathy (PDR). MethodsA prospective study was carried out with the 90 PDR patients (90 eyes) who underwent vitrectomy. The 90 patients(90 eyes)were assigned to the vitrectomy only group(43 eyes) and the IVR combined with vitrectomy group (47 eyes). The IVR was performed 5-13 days prior to vitrectomy in the IVR combined with vitrectomy group. There were 15 eyes with fibrous proliferation PDR (FPDR), 16 eyes with advanced PDR (APDR) without involving the macular and 16 eyes with APDR involving the macular in the vitrectomy only group. There were 14 eyes with FPDR, 15 eyes with APDR without involving the macular and 14 eyes with APDR involving the macular patients in the IVR combined with vitrectomy group. All the eyes in the two groups were regularly operated by the same doctor to complete the vitrectomy. The start and end time of vitrectomy were recorded. The average follow-up time was 10 months. The changes of best corrected visual acuity (BCVA) before and 1, 3 and 6 months after surgery were compared between the two groups. ResultsThe duration of operation of the FPDR type (t=-8.300) and the APDR involving the macular type (t=-2.418) in the IVR combined with vitrectomy group was shorter than vitrectomy only group (P < 0.05). The comparison of duration of operation of the APDR without involving the macular type in the two groups has no statistically significant difference (t=-1.685, P > 0.05). At 1 month after surgery, the comparison of BCVA of the IVR combined vitrectomy group and the vitrectomy only group in APDR involving the macular type has no statistically significant difference (t=0.126, P > 0.05). At 3, 6 months after surgery, the BCVA of the IVR combined vitrectomy group in APDR involving the macular type was significantly better than the BCVA of the vitrectomy only group (t=8.014, 7.808; P < 0.05). At 1, 3, and 6 months after surgery, the BCVA of the IVR combined vitrectomy group in FPDR type (t=3.809, 1.831, 0.600) and APDR without involving the macular type (t=0.003, 1.092, 3.931) compared with pre-treatment, the difference were not statistically significant (P > 0.05); the BCVA in APDR without involving the macular type compared with pre-treatment, the difference was distinctly statistically significant (t=2.940, 4.162, 6.446; P < 0.05); the BCVA in APDR involving the macular type (t=0.953, 1.682, 1.835) compared with pre-treatment, the difference were not statistically significant (P > 0.05). ConclusionPreoperative IVR of PDR can shorten the operation duration and improve the BCVA of APDR involving the macular type.
ObjectiveTo observe the clinical efficiency of intravitreal Conbercept on exudative age-related macular degeneration (eAMD). MethodsThis is an open and prospective study without control trial. Twenty eyes from 20 patients (19 males and 1 female) with eAMD diagnosed by fundus fluorescein angiography (FFA) and indocyanine green angiography (ICGA) were enrolled in this study. Before the injection, best-corrected visual acuity (BCVA) of early treatment of diabetic retinopathy study (ETDRS), non-contact tonometer, ophthalmoscope, fundus photography, fundus fluorescein angiograph (FFA), indocyanine green angiography (ICGA) and optical coherence tomography (OCT) were examined. The initial average letters of ETDRS acuity were 41.20±22.61, range from 8 to 80. The initial average central retina thickness (CRT) was (345.25±131.96) μm, range from 152 to 770 μm.All affected eyes were treated with intravitreal conbercept 0.05 ml (10 mg/ml). The patients were followed up for 6 to 9 months, with the mean time of (7.35±0.99) months.The BCVA, CRT after treatment were compared with baseline using paired t-test. ResultsDuring the 1, 3, 6, 12 months after treatment and the latest follow up, the mean BCVA were all improved with statistically significant difference (t=5.85, 7.09, 7.44, 7.25; P < 0.05). At 1 month ater treatment, the mean BCVA was obviously improved in 6 eyes (30%), improved in 8 eyes (40%), stable in 6 eyes (30%). At latest follow up, the mean BCVA was obviously improved in 6 eyes (30%), improved in 9 eyes (45%), stable in 5 eyes (25%). During the 1, 3, 6, 12 months after treatment and the latest follow up, the mean CRT were all decreased with statistically significant difference (t=3.34, 3.78, 3.47, 3.44; P < 0.05). At latest follow up, the leakage in macula lutea disappeared in 6 eyes (30%), decreased in 11 eyes (55%) and increased in 3 eyes (15%). No adverse events such as secondary retinal detachment or endoophthalmitis were found during the follow-up duration. ConclusionIntravitreal conbercept is a safe and effective approach for eAMD, may improve visual acuity, exudation and macular edema.
ObjectiveTo compare the efficacy of photodynamic therapy (PDT) alone or in combined with ranibizumab versus ranibizumab monotherapy (intravitreal injection, IVR) in patients with polypoidal choroidal vasculopathy (PCV). Methods80 eyes of 72 patients with PCV were enrolled into this retrospective and comparative study according to their therapeutic plan. 30 eyes of 28 patients, 28 eyes of 30 patients and 22 eyes of 21 patients were divided into PDT group, ranibizumab 0.5 mg group (IVR group) or the combination group, respectively. The patients with PCV were diagnosed according to clinical symptoms, optical coherence tomography (OCT) and fluorescent indocyanine green angiography (ICGA). The baseline best-corrected visual acuity (BCVA) before treatment was more than 0.05, and there was no retinal fibrosis and scar for all patients. There was no statistical difference of age (F=0.187), gender (χ2=0.423), average BCVA (F=1.120) and central retinal thickness (CRT) (F=0.431) among three groups (P > 0.05). They had not received any treatment before. Patients received verteporfin PDT in PDT group, 3 consecutive monthly IVRs starting day 1 in IVR group, and 3 IVRs after 3 days, 1 month, 2 months of PDT starting day 1 in combination group. Re-treatment was considered 3 months later if the follow up shown no changes in fundus photography, OCT and ICGA. The average follow-up time was 19 months. BCVA at baseline and follow-up visit at 1, 3, 6, 12 months was measured, and the proportion of patients with ICGA-assessed complete regression of polyps at month 6 was recorded as primary outcome. The CRT was measured at baseline and 6 months as secondary outcome. ResultsThere were significant difference of BCVA at 1, 3, 6 and 12 months among three groups(F=5.480, 5.249, 3.222, 4.711; P < 0.05). The average BCVA was significantly better at 1, 3, 6, 12 month than that at baseline(t=-6.632, -4.127, -3.904, -4.494; P < 0.05) in combination group, and was significantly better at 3, 6, 12 months than that at baseline (t=-5.636, -3.039, -3.833; P < 0.05) in IVR group. However there was no significant difference of the average BCVA in PDT group between follow-up at 1, 3, 6, l 2 months and baseline (t=1.973, 0.102, -0.100, -0.761; P > 0.05). The proportion of patients with complete regression of polyps at 6 months was higher in PDT (76.7%) or combination group (68.2%) than IVR group (35.7%) (χ2=0.003, 0.025; P < 0.05). There was no significant difference of CRT among 3 groups at baseline (P=0.651). The mean CRT decreased in all 3 treatment groups over 6 months (t=5.120, 3.635, 5.253; P < 0.05), but there was no significant difference of CRT among 3 groups (F=1.293, P > 0.05). ConclusionsThree therapies could effectively decrease CRT. IVR or IVR combined with PDT are both more effective than PDT therapy to improve vision of PCV patients. PDT or PDT combined with IVR was superior to IVR pnly in achieving complete regression of polyps in 6 months in PCV patients.
The introduction of anti-vascular endothelial growth factor (VEGF) therapy represents a landmark in the management of wet age-related macular degeneration (AMD). However, as a new therapy, several problems such as durability of the therapeutic effects, medication side effects, and medication selection have emerged. We should make appoint of improving the therapeutic effect and safety by realizing the limitation of the therapy, monitoring the clinical potential adverse reactions of anti-VEGF agents, and recommending individualized treatment.