In the expert consensus published by the Pediatrics in 2013, it was first proposed that anti-VEGF drugs can be considered for retinopathy of prematurity (ROP) with stage 3, zone Ⅰ with plus disease. However, there are many problems worth the attention of ophthalmologists, including the advantages and disadvantages of anti-VEGF therapy compared with traditional laser therapy, systemic and ocular complications after anti-VEGF therapy, and what indicators are the end points of anti-VEGF therapy. Combined with this consensus and numerous research findings, we recommend that the first treatment for anti-VEGF or laser therapy should be considered from disease control effects. For the threshold and pre-threshold lesions, the effect of anti-VEGF therapy for zoneⅡ lesions is better than that for zone Ⅰ lesions and the single-time effective rate is high. So, it is suggested that anti-VEGF therapy should be preferred for the first treatment. The choice of repeat treatment should be considered from the final retinal structure and functional prognosis. Laser therapy is advisable for the abnormal vascular regression slower and abnormalities in the posterior pole. It can reduce the number of reexaminations and prolong the interval between re-examinations. However, the premature use of laser has an inevitable effect on peripheral vision field. Excluding the above problems, supplemental therapy can still choose anti-VEGF therapy again. Most of the children with twice anti-VEGF therapy are sufficient to control the disease. Anti-VEGF therapy should be terminated when there are signs such as plus regression, threshold or pre-threshold lesions controlled without recurrence, peripheral vascularization, etc.
Diabetic macular ischemia (DMI) is one of the manifestation of diabetic retinopathy (DR). It could be associated with diabetic macular edema (DME), which may affect the vision of DR patients. FFA is the gold standard for the diagnosis of DMI, but with the advent of OCT angiography, a more convenient and diversified method for the evaluation of DMI has been developed, which makes more and more researchers start to study DMI. Intravitreal injection of anti-VEGF has become the preferred treatment for DME. When treating with DME patients, ophthalmologists usually avoid DMI patients. But if intravitreal anti-VEGF should be the contradiction of DME is still unclear. To provide references to the research, this article summarized the risk factors, assessment methods and influence of DMI. This article also analyzed the existing studies, aiming to offer evidences to a more reasonable and effective treatment decision for DME individual.
Anti-vascular endothelial growth factor (VEGF) drugs, including monoclonal antibodies (such as bevacizumab and ranibizumab) and fusion protein agents (such as aflibercept and conbercept) have been clinically proven to be effective to treat exudative age-related macular degeneration AMD). However, there are still some patients do not or poorly respond to the initial anti-VEGF agents, usually after several injections, ophthalmologists may switch to another anti-VEGF agent. In general, switching of anti-VEGF agent is considered for recurrent AMD, AMD resistance to anti-VEGF treatments. Current switching protocols include the replacement of monoclonal antibodies with fusion protein agents, the replacement of fusion protein agents with monoclonal antibodies, the substitution of one monoclonal antibody with another one, and the replacement of monoclonal antibodies with fusion protein agents and switching back with monoclonal antibodies. However, current researches on the switching of anti-VEGF drugs for exudative AMD are mostly retrospective and single-arm studies, and there are some differences in the results of different studies. Therefore, for patients with exudative AMD who do not respond to or respond poorly to anti-VEGF drugs, the efficacy of switching of anti-VEGF drugs is uncertain right now. Switching of anti-VEGF agents may improve the retinal anatomical outcome of the affected eye but may not necessarily improve visual acuity. Thus it is an option in the clinical practice to treat AMD. To determine the benefits of above mentioned switching regimens, randomized controlled clinical trials with large sample number and long study period will be needed.
Objective To compare the features of OCT angiography (OCTA) between neovascular age-related macular degeneration (nAMD) and myopic choroidal neovascularization (mCNV) patients before and after intravitreal anti-VEGF treatment. Methods A prospective cohort study. Twenty-nine patients (37 eyes) with nAMD (19 males and 10 females, aged 68.20±8.76) and 31 patients (34 eyes) with mCNV (9 males and 22 females, aged 43.10±11.80, with the mean diopter of −9.71±1.20 D) from Department of Ophthalmology, West China Hospital of Sichuan University during May and December 2017 were included in this study. Ranibizumab or Conbercept (0.5 mg/0.05 ml) was intravitreally injected in all eyes. The patients were follow-up for 3−6 months. The OCTA was conducted before treatment and 1 day, 1 week, 1 month and 3−6 months after treatment. In order to ensure that the scanning position was the same, the tracking mode was adopted for each scanning. According to the OCTA images, the lesion area, parafoveal superficial vessel density and perfusion area were measured and analyzed contrastively between nAMD and mCNV patients. Results The mean lesion area before and 1 month after treatment in nAMD patients were 0.38±1.87 mm2 and 0.06±0.12 mm2, while in mCNV patients, those were 0.26±1.06 mm2 and 0.03±0.05 mm2, respectively. There were statistically significant differences (Z=4.181, 4.475; P<0.001) in CNV lesion area before and 1 month after treatment between nAMD and mCNV patients. Compared with those before treatment, the absolute change (Z=1.853, P=0.064) and the percentage changes (t=2.685, P=0.010) of CNV lesion area 1 month after treatment in nAMD and mCNV patients show a statistical meaning. There were significantly decreases in both parafoveal superficial vessel density (F=8.997, P=0.003) and perfusion area (F=7.887, P=0.015) 3 months after treatment in nAMD patients, while decreases in parafoveal superficial vessel density (F=11.142, P=0.004) and perfusion area (F=7.662, P=0.013) could be detected 1 day after treatment in mCNV patients, before rising 1 month after treatment. Conclusions There are significantly differences in lesion area before and after the treatment of intravitreal anti-VEGF between nAMD and mCNV patients by OCTA examination. Moreover, the changes of both parafoveal superficial vessel density and perfusion area after anti-VEGF treatment are statistically different in two groups.
Objective To investigate the effect of photodynamic therapy (PDT) combined with intravitreal bevacizumab on wet age-related macular degeneration (AMD). Methods In this retrospective study, 34 eyes (28 cases) diagnosed with wet AMD received PDT combined intravitreal injection of bevacizumab, including 25 eyes with classic CNV and 9 eyes with minimally classic CNV by fluorescein angiography; On optical coherence tomography (OCT), 23 eyes showed intraretinal fluid (IRF) and 11 eyes presented subretinal fluid (SRF). After signing informed consent, all patients underwent initial standard PDT followed by intravitreal bevacizumab (1.25 mg) within succeeding 3 to 7 days. Best corrected visual acuity (BCVA) and OCT with routine eye examinations were evaluated monthly. Additional bevacizumab (1.25 mg) was injected intravitreally if new or increasing fluid appreciated on OCT, or BCVA lowered more than 5 letters even with stabilized fluid. Injection was discontinued if no fluid was showed on OCT (quot;dry macularquot;), or BCVA was stabilized even with fluid after two consecutive injections. BCVA and central retinal thickness (CRT) were analyzed and compared between baseline and 6 month follow-up. The correlation between parameters such as baseline BCVA, greatest linear dimension (GLD), type of CNV, SRF or IRF and posttreatment BCVA will be analyzed. The injection number of bevacizumab and complications were recorded. Results Compared to baseline, BCVA improved (9.4plusmn;10.2) letters and reach 44.9plusmn;21.3 letters (t=5.438,P<0.01) and CRT decreased (184.6plusmn;214.6) mu;m (t=4.810,P<0.01) at 6 month visit. The average of injection number was 1.9plusmn;0.9 (including initial injection of combination therapy). With multiple lineal regression analysis, only baseline BCVA correlated to posttreatment BCVA at 6 month visit (r=0.802.P<0.01). The type of CNV, GLD, SRF or IRF on OCT and CRT at baseline were not associated to post-treatment BCVA (r=0.053, -0.183, 0.139 and 0.053, respectively.P>0.05). BCVA of eyes with SRF (14.7 letters) increased more than eyes with IRF (6.9 letters) on OCT (t=-2.207,P=0.035). The change of BCVA after treatment (t=-0.076), change of CRT (t=-1.028) and number of injections (Z=-1.505) were not different between classic CNV and minimally classic CNV (P>0.05). The change of CRT (t=-0.020) and number of injections (Z=-0.237) did not present difference between SRF and IRF (P>0.05). The change of BCVA (t=1.159) and number of injections (Z=-1.194) were not correlated to whether residual fluid or not at 6 month visit (P>0.05). No severe complications were noticed during follow-up.Conclusion For wet AMD patients, PDT combined intravitreal bevacizumab could improve visual acuity, reduce retinal thickness and control CNV progress in a short-term.
Objective To compare the clinic therapeutic effect of intravitreal ranibizumab injection versus photodynamic therapy (PDT) combined with intravitreal ranibizumab injection for idiopathic choroidal neovascularizatio (ICNV), and to investigate the clinical effect and safety of treatment. Methods A randomized controlled clinical prospective study was performed for 27 patients (27 eyes) diagnosed as ICNV. Fourteen patients were assigned to receive PDT and intravitreal ranibizumab injection (combination roup.n=14); the control group was treated with only intravitreal ranibizumab injection (single group, n=13).The combination group was treated with an intravitreal injection of ranibizumab (0.5 mg/0.05 ml) 1 week after PDT. The bestcorrected visual acuity (BCVA) (logMAR), examination of the ocular fundus, fluorescence fundus angiography (FFA), indocyanine green angiography (ICGA) and optical coherence tomography (OCT) were performed respectively at 1, 2, 3, 6 and 12 months after treatment. If choroidal neovascularization (CNV) was only partially regressed or the leakage went on during follow-up, those patients were re-injected with ranibizumab. Results After 12 months, the average vision is 0.22plusmn;0.11 in single group, and 0.21plusmn;0.12 in combination group, and the differences were not significant (t=0.187, P=0.853). In single group FFA and ICGA showed completely closed CNV in 10 eyes (77.92%), and almost closed CNV in 3 eyes (23.08%) with obvious reduction of fluorescence leakage. In combination group FFA and ICGA showed completely closed CNV in 12 eyes (85.71%), and almost closed CNV in 2 eyes (14.29%) with obvious reduction of fluorescence leakage; OCT showed the subretinal fluid absorption and reduction of CNV. The average macular retinal thickness (MRT) in single groups is (167.96plusmn;10.69) m, and in combination groups is (171.64plusmn;11.30)m. In single and combination groups MRT decreased significantly at the final follow-up, but no significant differences in both groups (t=-0.887.P=0.389). The average number of intravitreal injection was (1.5plusmn;0.7) in combination group and (2.4plusmn;1.0) in single group (t=2.821,P=0.009). There were no ocular or systemic adverse events observed except for one patient with subconjunctival hemorrhage in the single group.Conclusions Intravitreal ranibizumab injection and PDT combined with intravitreal bevacizumab injection are both effective and safe for the patients with ICNV. The combined therapy can induce CNV regression, fundus hemorrhage and exudation absorption more effectively, and have less recurred CNV and side effects.
Objective To evaluate the efficacy and safety of intravitreal anti-vascular endothelial growth factor (VEGF) combined with photodynamic therapy (PDT) vs. photodynamic therapy for polypoidal choroidal vasculopathy (PCV).Methods A computerized search was conducted in Pubmed, OVID, Chinese Biological Medicine Database(CBM),China National Knowledge Infrastructure (CNKI) by using key words ldquo;polypoidal choroidal vasculopathy, photodynamic therapy, intravitreal anti-VEGFrdquo; in Chinese and/or English combined with manually searching of bibliographies of pertinent articles, journals and literature reference proceedings. Randomized controlled trials (RCT) and non-RCT were collected. The search time was ranged from establishment of each database to September, 2011. The search was no 1imitation in language. The best corrected visual acuity (BCVA),resolution and recurring of lesions, decrease or complete resolution of pigment epithelial detachment (PED),visual extinction or blindness rate,the rate of subretinal hemorrhage were analyzed by RevMan 5.0 software. Results In total, one RCT and four non-RCTs (273 patients) were included in the meta-analysis involving 148 patients in single treatment group and 125 patients in combined treatment group. The results of metaanalyses showed that there was no significant difference between two groups in the mean logarithm of minimal angle of resolution BCVA at six months [standard mean difference=0.01, 95% confidence interval (CI): -0.12- 0.14,P=0.84]and 12 months [standard mean difference = 0.04, 95%CI: -0.16-0.25,P=0.69 after treatment. There was no significant difference between two groups in the resolution of lesions [odds ratio (OR)=1.38,95%CI:0.74-2.55,P=0.31] at the months after treatment and decrease or complete resolution of PED (OR=0.67,95%CI:0.12-3.69,P=0.65) at 12 months after treatment. There was no significant difference between two groups in the recurring of lesions (OR=1.14, 95% CI:0.58-2.24,P=0.71) and lost of ge; three lines vision or blindness rate (OR=1.20, 95%CI:0.34-4.18,P=0.78) at 12 months after treatment. The rate of subretinal hemorrhage in combine treatment group was significant lower than single treatment group (OR=0.41, 95%CI:0.18 -0.94,P=0.04). Conclusions The incidence of subretinal hemorrhage occurred in patients with PCV after intravitreal anti-VEGF combined with PDT is much lower than that after single PDT.But the visual improvement, resolution of lesions and recurring of lesions of combined treatment need further studied to see if it is better than single PDT.