ObjectiveTo review the properties of bio-derived hydrogels and their application and research progress in tissue engineering. MethodsThe literature concerning the biol-derived hydrogels was extensively reviewed and analyzed. ResultsBio-derived hydrogels can be divided into single-component hydrogels (collagen,hyaluronic acid,chitosan,alginate,silk fibroin,etc.) and multi-component hydrogels[Matrigel,the extract of extracellular matrix (ECM),and decellularized ECM].They have favorable biocompatibility and bioactivity because they are mostly extracted from the ECM of biological tissue.Among them,hydrogels derived from decellularized ECM,whose composition and structure are more in line with the requirements of bionics,have incomparable advantages and prospects.This kind of scaffold is the closest to the natural environment of the cell growth. ConclusionBio-derived hydrogels have been widely used in tissue engineering research.Although there still exist many problems,such as the poor mechanical properties,rapid degradation,the immunogenicity or safety,vascularization,sterilization methods,and so on,with the deep-going study of optimization mechanism,desirable bio-derived hydrogels could be obtained,and thus be applied to clinical application.
OBJECTIVE: To sum up the clinical results of bio-derived bone transplantation in orthopedics with tissue engineering technique. METHODS: From January 2000 to May 2002, 52 cases with various types of bone defect were treated with tissue engineered bone, which was constructed in vitro by allogeneous osteoblasts from periosteum (1 x 10(6)/ml) with bio-derived bone scaffold following 3 to 7 days co-culture. Among them, there were 7 cases of bone cyst, 22 cases of non-union or malunion of old fracture, 15 cases of fresh comminuted fracture of bone defect, 4 cases of spinal fracture and posterior route spinal fusion, 3 cases of bone implant of alveolar bone, 1 case of fusion of tarsotarsal joint. The total weight of tissue engineered bone was 349 g in all the cases, averaged 6.7 g in each case. RESULTS: All the cases were followed up after operation, averaged in 18.5 months. The wound in all the case healed by first intention, but 1 case with second intention. Bone union was completed within 3 to 4.5 months in 50 cases, but 2 cases of delayed union. Six cases were performed analysis of CD3, CD4, CD8, ICAM-1 and VCAM-1 before and after operation, and no obvious abnormities were observed. CONCLUSION: Bio-derived tissue engineered bone has good osteogenesis. No obvious rejection and other complications are observed in the clinical application.
ObjectiveTo study the preparation method of acellular dermal matrix (ADM) for cartilage tissue engineering and analyze its biocompatibility. MethodsThe dermal tissues of the calf back were harvested, and decelluarized with 0.5% SDS, and the ADM was reconstructed with 0.5% trypsin, cross-linked with formaldehyde, and modified with 0.5% chondroitin sulfate which can promote the proliferation of chondrocytes. And the porosity, cytotoxicity, and biocompatibility were determined. Co-cultured 2nd passage chondrocytes and bone marrow stromal cells in a proportion of 3 to 7 were used as seed cells. The cells were seeded on ADM (experimental group) for 48 hours to observe the cell adhesion. The expressions of mRNA and protein of collagen type Ⅱ were tested by RT-PCR and Western blot methods, respectively. And the expressions were compared between the cells seeded on the scaffold and cultured in monolayer (control group). ResultsAfter modification of 0.5% trypsin, the surface of ADM was smooth and had uniform pores; the porosity (85.4%±2.8%) was significantly higher than that without modification (72.8%±5.8%) (t=-4.384, P=0.005). The cell toxicity was grade 1, which accords to the requirements for cartilage tissue engineering scaffolds. With time passing, the number of inflammatory cells decreased after implanted in the back of the rats (P<0.05). The scanning electron microscope observation showed that lots of seed cells adhered to the scaffold, the cells were well stacked, displaying surface microvilli and secretion. The expressions of mRNA and protein of collagen type Ⅱ were not significantly different between experimental and control groups (t=1.265, P=0.235;t=0.935, P=0.372). ConclusionThe ADM prepared by acellular treatment, reconstruction, cross-linking, and modification shows perfect characters. And the seed cells maintain chondrogenic phenotype on the scaffold. So it is a proper choice for cartilage tissue engineering.
ObjectiveTo analyze the progress in biological tissue engineering scaffold materials and the clinical application, as well as product development status. MethodsBased on extensive investigation in the status of research and application of biological tissue engineering scaffold materials, a comprehensive analysis was made. Meanwhile, a detailed analysis of research and product development was presented. ResultsConsiderable progress has been achieved in research, products transformation, clinical application, and supervision of biological scaffold for tissue engineering. New directions, new technology, and new products are constantly emerging. With the continuous progress of science and technology and continuous improvement of life sciences theory, the new direction and new focus still need to be continuously adjusted in order to meet the clinical needs. ConclusionFrom the aspect of industrial transformation feasibility, acellular scaffolds and extracellular matrix are the most promising new growth of both research and product development in this field.
To summarize the medium-term cl inical result of bio-derived bone transplantation in orthopedics with tissue engineering technique. Methods From December 2000 to June 2001, 10 cases of various types of bone defect were treated with tissue engineered bone, which was constructed in vitro by allogenous osteoblasts from periosteum (1 × 106/ mL) with bio-derived bone scaffold following 3 to 7 days co-culture. Six men and 4 women were involved in this study, aged from 14 to 70 years with a median of 42 years. Among them, there were 2 cases of bone cyst, 1 case of non-union of old fracture, 6 cases of fresh comminuted fracture with bone defect, and 1 case of chronic suppurative ostemyel itis. The total weight of tissue engineered bone was 3-15 g in all the cases, averaged 7.3 g in each case. Results The wound in all the case healed by first intention. For 7 year follow up, bone union was completed within 3.0 to 4.5 months in 9 cases, but loosening occurred and the graft was taken out 1 year after operation in 1 case. The X-ray films showed that 9 cases achieved union except one who received resection of the head of humerus. No obvious abnormities were observed, and the function of affected l imbs met daily l ife and work. Conclusion Bio-derived tissue engineered bone has good osteogenesis. No obvious rejection and other compl ications are observed in the cl inical appl ication.
Objective To review the current status and problems in the developing scaffolds for the myocardial tissue engineering appl ication. Methods The l iterature concerning the myocardial tissue engineering scaffold in recent years was reviewed extensively and summarized. Results As one of three elements for tissue engineering, a proper scafold is veryimportant for the prol iferation and differentiation of the seeding cells. The naturally derived and synthetic extracellular matrix (ECM) materials aim to closely resemble the in vivo microenvironment by acting as an active component of the developing tissue construct in myocardial tissue engineering. With the advent and continuous refinement of cell removal techniques, a new class of native ECM has emerged with some striking advantages. Conclusion Through using the principle of composite scaffold, computers and other high-technology nano-polymer technology, surface modification of traditional biological materials in myocardial tissue engineering are expected to provide ideal myocardial scaffolds.
Objective To review the appl ication of electrospinning in preparation of tendon tissue engineered scaffolds, to describe its appl ication effect and prospects. Methods Recent l iterature was extensively reviewed and summarized from various aspects, concerning the appl ication of electrospinning in preparing tendon tissue engineered scaffolds. Results Because of its huge surface and high porosity, the electrospun fibers prepared by electrospinning technology have been widely used in the manufacture of tendon tissue engineered scaffolds in recent years. A variety of materials, including polylactic acid, have been successfully electrospun into various types of tendon tissue engineered scaffolds, and goodresults in the repair of tendon defect were achieved. Conclusion The electrospinning technology has provide a new way for the preparation of the tendon tissue engineered scaffolds, with the perfection of the technology they will have broad application prospects in the field of tendon tissue engineering.
ObjectiveTo explore the morphological and functional features of tissue engineered composite constructed with bone mesenchymal stem cells (BMSCs) as seeding cells, thermosensitive collagen hydrogel (TCH) and poly-L-lactic acid (PLLA) as the extracellular matrix (ECM) scaffolds in the dynamic culture system. MethodsBMSCs were separated from long bones of Fischer344 rat, and cultured; and BMSCs at the 3rd generation were seeded on the ECM scaffold constructed with braided PLLA fiber and TCH. The BMSCs-ECM scaffold composite was cultured in the dynamic culture system which was designed by using an oscillating device at a frequency of 0.5 Hz and at swing angle of 70° (experimental group), and in the static culture system (control group) for 7 days. The general observation and scanning electron microscopy (SEM) observation were performed; total DNA content was measured at 0, 1, 3, and 7 days. ResultsPLLA was surrounded by collagen to form translucent gelatiniform in 2 groups; and compact membrane developed on the surface of PLLA. SEM observation showed that BMSCs had high viability and were fusiform in shape with microvilli on the surface of cells, and arranged in line; collagen and cells filled in the pores of PLLA fiber in the experimental group. The cells displayed a flat shape on the surface; there were less cells filling in the pores of PLLA fiber in the control group. At 1, 3, and 7 days, total DNA content in the experimental group was significantly higher than that in control group (P < 0.05). The total DNA content were increased gradually with time in 2 groups, showing significant difference between at 0 day and at 7 days (P < 0.05). ConclusionThe ECM constructed with TCH and PLLA has good biocompatibility. The dynamic cultivation system can promote the cell proliferation, distribution, and alignment on the surface of the composite, so it can be used for tissue engineered composite in vitro.
Objective To review the research progress of graphene and its derivatives in repair of peripheral nerve defect. Methods The related literature of graphene and its derivatives in repair of peripheral nerve defect in recent years was extensively reviewed. Results It is confirmed by in vitro and in vivo experiments that graphene and its derivatives can promote cell adhesion, proliferation, differentiation and neurite growth effectively. They have good electrical conductivity, excellent mechanical properties, larger specific surface area, and other advantages when compared with traditional materials. The three-dimensional scaffold can improve the effect of nerve repair. Conclusion The metabolic pathways and long-term reaction of graphene and its derivatives in the body are unclear. How to regulate their biodegradation and explain the electric coupling reaction mechanism between cells and materials also need to be further explored.
ObjectiveTo observe the bladder regeneration by collagen membrane scaffolds for bladder construction to find a new alternative scaffold material. MethodsTwelve healthy adult male Sprague Dawley rats, weighing 300-350 g, were randomly divided into collagen membrane scaffold group (experimental group, n=6), and sham operated group (control group, n=6). Upper hemicystectomy was performed and collagen scaffold was used for reconstruction in experimental group, while the bladder was turned over without bladder resection in control group. At 30 days after operation, the animals were sacrificed and grafts were harvested;HE staining and Masson staining were used to evaluate the bladder regeneration, immunohistochemical staining was performed with α-smooth muscleactin (α-SMA) and von Willebrand factor (vWF) markers to evaluate the percentage of α-SMA positive area and capillary number. ResultsThe rats of 2 groups survived to the end of the experiment, and no urine leakage or infection was observed in experimental group. Histologically, control group presented a pattern of normal bladder structure, experimental group presented a pattern of almost normal urothelium with a small amount of smooth muscle cells and a thin layer of undegraded collagen fibers. Immunohistochemically, experimental group showed ingrowth of smooth muscle fibers and new capillary formation along the collagen membrane scaffolds. The percentage of α-SMA positive area and capillary number in experimental group were significantly lower than those in control group (6.49%±2.14% vs. 52.42%±1.78% and 4.83±0.75 vs. 14.83±1.17, respectively)(t=40.40, P=0.00; t=17.62, P=0.00). ConclusionThe collagen membrane scaffolds could be an effective scaffold material for bladder reconstruction.