目的:评价无创正压通气(NIPPV)在救治慢性阻塞性肺疾病(COPD)急性加重期并严重呼吸衰竭患者中的临床疗效。方法:对2006年1月至2008年1月入选的47例COPD急性加重期并严重呼吸衰竭患者使用双水平无创正压呼吸机面罩辅助通气, 患者均伴有不同程度的意识障碍,动态观察NIPPV治疗前和治疗后2 h、8 h、1 d及3 d动脉血气、神志、治疗后患者的转归,NIPPV的不良反应及并发症。结果:本组47例患者中,41例经NIPPV治疗2 h、8 h、1 d及3 d后与治疗前比较,PaO2明显升高Plt;0.01,PaCO2明显降低Plt;0.01,pH明显升高Plt;0.01,均脱机出院,有效率达87.23%(41/47);6例改为有创通气,其中3例经有创机械通气治疗后脱机成功,1例因上消化道出血死亡,2例自动出院.结论:双水平无创正压通气对有选择的COPD急性加重期并严重呼吸衰竭患者治疗疗效确切,它能迅速缓解病情,减少患者的气管插管和气管切开以及相应的并发症,提高生活质量。
ObjectiveTo observe the clinical curative effect of bilevel positive airway pressure (BiPAP) noninvasive ventilator in the treatment of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) with respiratory failure. MethodsThe clinical materials of 80 patients with AECOPD with respiratory failure were reviewed and analyzed from January 2010 to December 2012. The patients were divided into two groups based on whether BiPAP mechanical ventilation therapy was implemented or not. The vital signs and arterial blood gas analysis, curative effect and medical expenses were compared between the two groups. ResultsThe indexes of vital signs and blood gas analysis before and after treatment showed the consistency of the trend of gradual improvement (P<0.05). After 3-day treatment, the indexes of vital signs and blood gas analysis in the study group were significantly better than the control group (P<0.05). Compared with the control group, the total effective rate was significantly higher, the hospital stay was significantly shorter, the intubation was significantly less, and the medical expenses were significantly lower in the study group (P<0.05). ConclusionThe BiPAP non-invasive ventilator has significant effect in improving vital sign, index of blood gas analysis, rate of endotracheal intubation and length of stay, which is worthy of further promotion.
ObjectiveTo investigate the application value of noninvasive ventilation (NIV) performed in patients with unplanned extubation (UE) in intensive care unit (ICU).MethodsThis was a retrospective analysis. The clinical data, application of NIV, reintubation rate and prognosis of UE patients in the ICU of this hospital from January 2014 to December 2018 were reviewed, and the patients were assigned to the control group or the NIV group according to the application of NIV after UE. The data between the two groups were compared and the application effects of NIV in UE patients were evaluated.ResultsA total of 66 UE patients were enrolled in this study, including 44 males and 22 females and with an average age of (64.2±16.1) years. Out of them, 41 patients (62.1%) used nasal catheter or mask for oxygenation as the control group, 25 patients (37.9%) used NIV as the NIV group. The Acute Physiology andChronic Health EvaluationⅡ score of the control group and the NIV group were (18.6±7.7) vs. (14.8±6.3), P=0.043. The causes of respiratory failure in the control group and the NIV group were as follows: pneumonia 16 patients (39.0%) vs. 7 patients (28.0%), postoperative respiratory failure 7 patients (17.1%) vs. 8 patients (32.0%), chronic obstructive pulmonary disease 8 patients (19.5%) vs. 6 patients (24.0%), others 5 patients (12.2%) vs. 4 patients (16.0%), heart failure 3 patients (7.3%) vs. 0 patients (0%), nervous system diseases 2 (4.9%) vs. 0 patients (0%), which showed no significant difference between the two groups. Mechanical ventilation time before UE were (12.5±19.8) vs (12.7±15.2) d (P=0.966), PaO2 of the control group and the NIV group before UE was (114.9±37.4) vs. (114.4±46.3)mm Hg (P=0.964), and oxygenation index was (267.1±82.0) vs. (257.4±80.0)mm Hg (P=0.614). Reintubation rate was 65.9% in the control group and 24.0% in the NIV group (P=0.001). The duration of mechanical ventilation was (23.9±26.0) vs. (21.8±26.0)d (P=0.754), the length of stay in ICU was (34.4±36.6) vs. (28.5±25.8)d (P=0.48). The total mortality rate in this study was 19.7%. The mortality rate in the control group and NIV group were 22.0% and 16.0% (P=0.555).ConclusionPatients with UE in ICU may consider using NIV to avoid reintubation.
Objective To determine the efficacy and prognosis of noninvasive positive pressure ventilation (NPPV) in exacerbations of chronic obstructive pulmonary disease (COPD). Methods Trials were located through electronic searches of MEDLINE, EMBASE, Springer, and Foreign Journals Integration System (from the start date to March 2008). We also checked the bibliographies of retrieved articles. Statistical analysis was performed with The Cochrane Collaboration’s software RevMan 4.2.10. Results A total of 19 trials involving 1 236 patients were included. Results showed that: (1) NPPV vs. conventional therapy: NPPV was superior to conventional therapy in terms of intubation rate (RR 0.36, 95%CI 0.27 to 0.49), failure rate (RR 0.62, 95%CI 0.43 to 0.90), and mortality (RR 0.49, 95%CI 0.34 to 0.69). The length of hospital stay was shorter in the NPPV group compared with the conventional group (WMD – 3.83, 95%CI – 5.78 to – 1.89), but the length of ICU stay was similar. The changes of PaO2, PaCO2, and pH were much more obvious in the NPPV group compared with the conventional group. The change of respiratory rate was more significant in the NPPV group compared with the conventional group (WMD – 3.75, 95%CI – 5.48 to – 2.03). At discharge and follow-up, there were no significant differences in FEV1, pH, PaCO2, PaO2, and vital capacity between the two groups. (2) NPPV vs. invasive ventilation: the mortality was similar between the two groups. The incidence of complications was lower in the NPPV group compared with the invasive group (RR 0.38, 95%CI 0.20 to 0.73). The length of ICU stay, duration of mechanical ventilation, and weaning time were shorter in the NPPV group than those of the invasive group. At discharge and follow-up, clinical conditions were similar between the two groups. Conclusion The limited current evidence showed that NPPV was superior to conventional therapy in improving intubation rate, mortality, short term of blood-gas change, the change of respiratory rate; and superior to invasive ventilation in the length of hospital stay and the incidence of complication. There were no difference among them in discharge and follow-up.
Objective To explore the effects of enteral tube feeding on moderate AECOPD patients who underwent noninvasive positive pressure ventilation ( NPPV) . Methods Sixty moderate AECOPD patients with NPPV admitted from January 2009 to April 2011 were recruited for the study. They were randomly divided into an enteral tube feeding group (n=30) received enteral tube feeding therapy, and an oral feeding group (n=30) received oral feeding therapy. Everyday nutrition intake and accumulative total nutrition intake in 7 days, plasma level of prealbumin and transferrin, success rate of weaning, duration of mechanical ventilation, length of ICU stay, rate of trachea cannula, and mortality rate in 28 days were compared between the two groups. Results Compared with the oral feeding group, the everyday nutrition intake and accumulative total nutrition intake in 7 days obviously increased (Plt;0.05) , while the plasma prealbumin [ ( 258.4 ±16.5) mg/L vs. (146.7±21.6) mg/L] and transferrin [ ( 2.8 ±0.6) g/L vs. ( 1.7 ±0.3) g/L] also increased significantly after 7 days in the enteral tube feeding group( Plt;0.05) . The success rate of weaning ( 83.3% vs. 70.0%) , the duration of mechanical ventilation [ 5. 6( 3. 2-8. 6) days vs. 8. 4( 4. 1-12. 3) days] , the length of ICU stay [ 9. 2( 7. 4-11. 8) days vs. 13. 6( 8.3-17. 2) days] , the rate of trachea cannula ( 16. 6% vs. 30. 0% ) , the mortality rate in 28 days ( 3. 3% vs. 10. 0% ) all had significant differences between the enteral tube feeding group and the oral feeding group. Conclusions For moderate AECOPD patients with NPPV, enteral tube feeding can obviously improve the condition of nutrition and increase the success rate of weaning, shorten the mechanical ventilation time and the mean stay in ICU, decrease the rate of trachea cannula and mortality rate in 28 days. Thus enteral tube feeding should be preferred for moderate AECOPD patients with NPPV.
ObjectiveTo investigate the effect of noninvasive positive-pressure ventilation for elderly patients with chronic obstructive pulmonary disease (COPD) combined with left heart failure. MethodsA total of 152 patients (70-85 years old) diagnosed with COPD combined with left heart failure and treated in our hospital between June 2011 and January 2015 were randomly divided into trial group (noninvasive positive-pressure ventilation with routine treatment, n=76) and control group (routine treatment, n=76). Respiratory rate, heart rate, blood pressure, pH, arterial partial pressure of carbon dioxide (PaCO2), arterial partial pressure of oxygen (PaO2) and left ventricular ejection fraction (LVEF) were analyzed and compared between the two groups after treatment. We did t-test to analyze the difference of these indexes between the two groups statistically. ResultsRespiratory rate, heart rate and PaCO2 in both of the two groups after the treatment were significantly lower than those before the treatment (P<0.001), while PaO2 and LVEF in both of the two groups after the treatment were significantly higher than those before the treatment (P<0.001). The systolic pressure and diastolic pressure in both of the two groups after the treatment didn't differ much from those before the treatment (P>0.05). The pH value after the treatment increased only in the trial group compared with that before the treatment (P<0.05). The respiratory rate, heart rate, pH value, PaO2, PaCO2 and LVEF after the treatment in trial group were meliorated compared with those in the control group (P<0.05). ConclusionTreatment with noninvasive positive-pressure ventilation for elderly patients with COPD combined with left heart failure is more efficient than the routine treatment.
ObjectiveTo investigate whether noninvasive positive pressure ventilation (NIV) will improve preoxygenation in critically ill patients in intensive care unit (ICU) before intubation, when compared with bag-valve-mask (BVM).MethodsThis was a single-centered, prospective and randomized study. The patients in the study were those who required tracheal intubation in the ICU of the First Affiliated Hospital of Guangzhou Medical University and Guangzhou Institute of Respiratory Health from June 2015 to June 2017. These critically ill patients were provided with BVM or NIV assisted preoxygenation randomly. The data of the NIV group and the control group were compared and the application values of NIV in preoxygenation of critically ill patients were evaluated.ResultsA total of 106 patients participated in this study, including 75 males and 31 females and with an average age of (65.0±12.6) years. The patients were classified either into the control group (BVM assisted preoxygenation, n=53), or the NIV group (NIV assisted pre-oxygenation, n=53). The causes of intubation in the control group and the NIV group were as follows: pneumonia [40 patients (75.5%) vs. 39 patients (73.6%)], chronic obstructive pulmonary disease [12 patients (22.6%) vs. 11 patients (20.8%)], and other disease [1 patient (1.9%) vs. 3 patients (5.7%)], which showed no significant difference between the two groups. The scores of the Acute Physiology and Chronic Health Evaluation System Ⅱ of the control group and the NIV group were 20 (17, 26) vs. 20 (16, 26), P=0.86, which also showed no significant difference. The oxygen saturation of the pulse (SpO2) before preoxygenation were similar in both the control group and the NIV group 92% (85%, 98%) vs. 91% (85%, 98%), P=0.87. After preoxygenation, SpO2 was significantly higher in the NIV group than in the control group 99% (96%, 100%) vs. 96% (90%, 99%), P=0.001. For the subgroup of patients with SpO2 less than 90% before preoxygenation, the respective SpO2 in the control group and the NIV group were 83% (73%, 85%) vs. 81% (75%, 86%), P=0.75; after preoxygenation, SpO2 in the NIV group was significantly higher than in the control group 99% (96%, 100%) vs. 94%(90%, 99%), P=0.000. For the subgroup of patients with SpO2 of 90% or more before preoxygenation, the respective SpO2 in the control group and the NIV group were similar 95.5% (92%, 99%) vs. 96% (94%, 99%), P=0.52; and continued to be similar after preoxygenation 98% (95%, 100%) vs. 99% (96%, 100%), P=0.1. The duration of mechanical ventilation of the control group and the NIV group was 17 (10, 23)d vs. 19 (11, 26)d (P=0.86). The 28 days survival rate of the control group and the NIV group was 73.6% vs. 71.7% (P=0.34). The mortality rate in the control group and NIV group were 31.3% and 31.7% (P=0.66).ConclusionsWhen compared with the use of BVM, NIV assisted preoxygenation is effective and safe for critically ill patients. Critically ill patients with severe hypoxemia will benefit more from NIV assisted preoxygenation.