To observe the effect of percutaneous electrical stimulation on peripheral nerve regeneration, a model was created on the sciatic nerves of 56 rats from either sectioned and followed by direct anastomosis or clamping of the nerve. The indices, such as conducting velocity of nerve, maximal induced action potential of muscle, growth speed of nerve, rateof axon crossing anastomosis site, number of muscular fiber on transverse area and weight of muscle by autocontrol were compared. In this study, 36 rats were divided into two groups, 24 rats in Group 1 and 12 rats in Group 2. In Gourp 1, both sciatic nerves were sectioned and was anastomozed 4 weeks later. One side of the nerve was stimulated with percutaneous electric current, the other side was served as control. In Group 2, both sides of nerves were clamped and the electical stimulationwas carried out on one side. The parameters of the electric current were 2~5HZ, 0.4m/s, 24~48V. The electrophysiological and histomorphological features were observed 1 to 6 weeks after operation. The results showed that in the stimulatedside, the indices were all superior to that of the control side. This suggestedthat electrical stimulation could promote peripheral nerve regeneration.
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disease caused by the mutations in the NF1 gene, with an incidence of approximately 1/3 000. Affecting multiple organs and systems throughout the body, NF1 caused a wide variety of clinical symptoms. A comprehensive multidisciplinary diagnostic and treatment model is needed to meet the diverse needs of NF1 patients and improve their quality of life. In recent years, the emergence of targeted therapies has further benefited NF1 patients, and the number of clinical consultations has increased dramatically. However, due to the rarity of the disease itself and insufficient attention previously, the standardized, systematic, and precise diagnosis and treatment model of NF1 still needs to be further improved. In this paper, we reviewed the current status of comprehensive diagnosis and treatment of NF1 in China, combine with our long-term experiences in diagnosis and treatment of this disease. Meanwhile, we propose future directions and several suggestions for the comprehensive diagnosis and treatment model for Chinese NF1 patients.
Objective To review the current progress of human facial allotransplantation in China and the other countries. Methods The recent literature concerned with human facial allotransplantation was extensively reviewed and briefly summarized. Results According to the literature reviewed, the main issues could be divided into four categories: technical aspects,immunological aspects,psychological and social issues ethicaland legal problems related to facial allotransplantation. However, because of the complexity of the human facial allotransplantation, which involved many problems related to immunity, psychology, society, ethics, etc., there was much controversy in this field. Conclusion In spite of the existent problems, facial allotransplantation in humans has still benefited the patient whose face is severely disfigured.
Objective To separate each protein band from the nerve regeneration conditioned fluid(NRCF)and to study whether there are somenew and unknown neurotrophic factors in the protein bands with a relative molecular mass of 220×103. Methods The silicone nerve regenerationchambers were formed in the sciatic nerve of the 25 New Zealand rabbits (weight,1.8-2.5 kg), and NRCF was taken from it at 1 week after operation. The Nativepolyacrylamide gel electrophoresis (Native-PAGE) was used for separating the proteins from NRCF and detecting the relative molecular mass. The Western blot and ELISA were used to observe whether the protein bands [220×103 (Band a), (20-40)×103(Band c)] of NRCF could combine with the antibody of the known antibody of neurotrophic factor (NTF):nerve growth factor(NGF), glial cell-derived neurotrophic factor(GDNF), brainderived neurotrophic factor(BDNF), neurotrophin 3(NT-3), NT-4, ciliang neurotrophic factor(CNTF). Results Separated by Native-PAGE, NRCF mainly contained two protein bands:Band a had a relative molecular mass about 220×103, and Band c had a relative molecular mass about (20-40)×103. Band a could not combine with the antibodies of the NGF, BDNF, CNTF, and NT-3, but could combine with the antibody of NT-4.Band c could combine with the antibodies of NGF, BDNF, CNTF and NT-3, but could not combine with the antibodies of NT-4 and GDNF. Conclusion The protein bands with a relative molecular mass of 220×103 have ber neurotropic and neurotrophic effects than the protein bands with a relative molecular mass of (20-40)×103, which contains NGF,CNTF, etc. NT-4 just has a weak or no effect on the sympathetic neurone. This indicates that there is a new NTF in the protein bands with a relative molecular mass of 220×103, which only combines with the antibody of NT-4.