west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "枢椎" 25 results
  • DESIGN AND EXPERIMENTAL STUDY OF INDIVIDUAL DRILL TEMPLATES FOR ATLANTOAXIAL PEDICLE SCREW FIXATION

    Objective To explore and evaluate the accuracy and feasibil ity of individual rapid prototype (RP) drill templates for atlantoaxial pedicle screw implantation. Methods Volumetric CT scanning was performed in 8 adult cadaveric atlas and axis to collect Dicom format datas. Then three-dimensional (3D) images of atlas and axis were reconstructed and the parameters of pedicles of 3D model were measured by using software Mimics 10.01. The 3D model was saved by STLformat in Mimics. The scattered point cloud data of 3D model were processed and the 3D coordinate system was located in software Imageware 12.1. The curves and surfaces of 3D model were processed in software Geomagic Studio 10. The optimal trajectory of pedicle screw was designed and a template was constructed which accorded with the anatomical morphology of posterior arch of atlas and lamina of axis by using software Pro/Engineer 4.0. The optimal trajectory of pedicle screw and the template were integrated into a drill template finally. The drill template and physical models of atlas and axis were manufactured by RP (3D print technology). The accuracy of pilot holes of drill templates was assessed by visually inspecting and CT scanning. Results The individual drill template was used conveniently and each template could closely fit the anatomical morphology of posterior arch of atlas and lamina of axis. Template loosening and shifting were not found in the process of screw implantation. Thirty-two pedicle screws were inserted. Imaging and visual inspection revealed that the majority of trajectories did not penetrate the pedicle cortex, only 1 cortical penetration was judged as noncritical and did not injury the adjacent spinal cord, nerve roots, and vertebral arteries. The accuracy of atlas pedicle screw was grade 0 in 15 screws and grade I in 1 screw, and the accuracy of axis pedicle screw was grade 0 in 16 screws. Conclusion The potential of individual drill templates to aid implantation of atlantoaxial pedicle screw is promising because of its high accuracy.

    Release date:2016-09-01 09:03 Export PDF Favorites Scan
  • POSTERIOR ATLANTOAXIAL LATERAL MASS SCREW FIXATION AND SUBOCCIPITAL DECOMPRESSION FOR TREATMENT OF Arnold-Chiari MALFORMATION ASSOCIATED WITH ATLANTOAXIAL DISLOCATION

    ObjectiveTo evaluate the effectiveness of the posterior atlantoaxial lateral mass screw fixation and suboccipital decompression in the treatment of Arnold-Chiari malformation associated with atlantoaxial joint dislocation. MethodsBetween September 2012 and November 2015, 17 cases of Arnold-Chiari malformation associated with atlantoaxial dislocation were treated by the posterior atlantoaxial lateral mass screw fixation and suboccipital decompression and expansion to repair the dura mater and bone graft fusion. There were 10 males and 7 females, aged 35-65 years (mean, 51.4 years). The disease duration was 14 months to 15 years with an average of 7.4 years. According to Arnold-Chiari malformation classification, 13 cases were rated as type I, 3 cases as type II, and 1 case as type III-IV. Cervical nerve root stimulation and compression symptoms were observed in 12 cases, occipital foramen syndrome in 11 cases, cerebellar compression symptoms in 6 cases, and syringomyelia in 10 cases. ResultsPrimary healing of incision was obtained in the other patients except 1 patient who had postoperative cerebrospinal fluid leakage after removal of drainage tube at 3 days after operation, which was cured after 7 days. All patients were followed up 6 months to 2 years, with an average of 18.4 months. The neurological dysfunction was improved in different degrees after operation. The Japanese Orthopedic Association (JOA) score was significantly increased to 16.12±1.11 at 6 months from preoperative 11.76±2.01 (t=13.596, P=0.000); compression of spinal cord and medulla was improved. X-ray examination showed bone graft fusion at 6 months after operation. In 10 patients with spinal cord cavity, MRI showed empty disappearance in 3 cases, empty cavity lessening in 6 cases, and no obvious change in 1 case at 6 months. ConclusionAtlantoaxial lateral mass screw fixation and suboccipital decompression and expansion to repair the dura mater can obtain good effectiveness in the treatment of Arnold Chiari malformation associated with atlantoaxial transarticular dislocation.

    Release date:2016-11-14 11:23 Export PDF Favorites Scan
  • SPINAL PEDICLE SCREW INTERNAL FIXATION THROUGH ENDOSCOPE-ASSISTED POSTERIOR APPROACH FOR TREATMENT OF TRAUMATIC ATLANTOAXIAL INSTABILITY

    Objective To explore the feasibility and effectiveness of spinal pedicle screw internal fixation through endoscope-assisted posterior approach for the treatment of traumatic atlantoaxial instability. Methods Between September 2008 and September 2010, 44 patients with traumatic atlantoaxial instability received spinal pedicle screw internal fixation through endoscope-assisted posterior operation (micro-invasive surgical therapy group, n=22) or traditional surgical therapy (control group, n=22). There was no significant difference in gender, age, type of injury, disease duration, and preoperative Japanese Orthopedic Association (JOA) score between 2 groups (P gt; 0.05). The blood loss, operation time, length of the incision, improvement rate of JOA, and graft fusion rates were compared between 2 groups to assess the clinical outcomes. Results The blood loss, operation time, and length of the incision in the micro-invasive surgical therapy group were better than those in control group (P lt; 0.05). All incisions were primary healing. Of 88 pedicle screws, 7 pedicle screws penetrated into the interior walls of cervical transverse foramen in the micro-invasive surgical therapy group and 8 in the control group, but there was no syndrome of vertebral artery injury. All patients of the 2 groups were followed up 12 to 37 months (mean, 26 months). Bony fusion was achieved in all cases within 3 to 12 months (mean, 5.3 months). No loosening or breakage of screw occurred. At 6 months to 1 year after operation, the internal fixator was removed in 6 cases and the function of head and neck rotary movement were almost renewed. The JOA score was significantly improved at last follow-up when compared with preoperative score (P lt; 0.05), and no significant difference in JOA score and improvement rate between the 2 groups at last follow-up (P gt; 0.05). Conclusion The micro-invasive surgical therapy can acquire the same effectiveness to the traditional surgical therapy in immediate recovery of stability, high graft fusion rate, and less complication. Moreover, it can significantly reduce the operation time, blood loss, and soft tissue injury, so this approach may be an ideal way of internal fixation to treat traumatic atlantoaxial instability.

    Release date:2016-08-31 04:22 Export PDF Favorites Scan
  • Short-term effectiveness of axis laminar screws for reducible atlantoaxial dislocation

    ObjectiveTo investigate reliability and short-term effectiveness of axis laminar screws for reducible atlantoaxial dislocation (RAAD).MethodsA clinical data of 41 patients with RAAD who were admitted between February 2013 and February 2018 and met the inclusion criteria was retrospectively analyzed. The atlases in all patients were fixated by lateral mass screws, and the axes were fixed by laminar screws in 13 cases (LS group) and by pedicle screws in 28 cases (PS group). There was no significant difference in gender, age, and preoperative Japanese Orthopedic Association (JOA) score between the two groups (P>0.05). The effectiveness was estimated by post-operative JOA score; and the accuracy of the axis screw, atlantoaxial bone graft fusion, and the fixation stability were examined by X-ray film and CT.ResultsAll incisions healed by first intention. All patients were followed up 12-17 months (mean, 13.8 months) in LS group and 12-20 months (mean 14.1 months) in PS group, and the difference in follow-up time was not significant (Z=−0.704, P=0.482). At last follow-up, JOA scores were 13.9±1.6 in LS group and 14.3±1.8 in PS group, which significantly improved when compared with the pre-operative scores in the two groups (t=−9.033, P=0.000; t=−15.835, P=0.000); while no significant difference was found between the two groups (t=−0.630, P=0.532). Twenty-five screws of 26 screws in LS group and 54 screws of 56 screws in PS group were implanted accurately, with no significant difference in the accuracy of the axis screw between the two groups (Z=−0.061, P=0.951). All patients obtained atlantoaxial bone graft fusion, except 1 case in PS group. There was no significant difference in the atlantoaxial bone graft fusion between the two groups (Z=−0.681, P=0.496).ConclusionFor RAAD, Axis laminar screws can maintain the atlantoaxial primary stability and had a good short-term effectiveness. So, it could be an alternative and reliable technique for axis screw.

    Release date:2019-11-21 03:35 Export PDF Favorites Scan
  • MINIMALLY INVASIVE ANTERIOR TRANSARTICULAR SCREW FIXATION AND FUSION FOR ATLANTOAXIAL INSTABILITY

    Objective To investigate the cl inical results and complications of minimally invasive anterior transarticular screw fixation and fusion for atlantoaxial instabil ity. Methods Between May 2007 and December 2010, 13 patients with atlantoaxial instabil ity were treated with minimally invasive anterior transarticular screw fixation and fusion under endoscope. There were 11 males and 2 females, aged 17-61 years (mean, 41.3 years). The time between injury and operation was 5-14 days (mean, 7.4 days). All cases included 6 patients with Jefferson fracture, 5 with odontoid fracture, and 2 with os odontoideum. According to Frankel classification of nerve functions, 2 cases were rated as grade D and 11 cases as graed E. The operation time, intra-operative blood loss, radiation exposure time, and complications were recorded and analyzed. The stabil ity was observed by X-ray films. The cl inical outcome was assessed using the Frankel scale, and the fusion rates were determined by CT scan threedimensional reconstruction at last follow-up. Results The mean operation time was 124 minutes (range, 95-156 minutes); the mean intra-operative blood loss was 65 mL (range, 30-105 mL); and the mean radiation exposure time was 41 seconds (range, 30-64 seconds). Thirteen patients were followed up 12-47 months (mean, 25.9 months). No blood vessel and nerve injuries or internal fixator failure occurred. The bone fusion time was 6 months, and the dynamic cervical radiography showed no instabil ity occured. At last follow-up, the neurological function was grade E in all patients. The fusion rate was 84.6% (11/13). No continuous bone bridge was seen in the joint space of 2 patients, but they achieved stabil ity. Conclusion Minimally invasive anterior transarticular screw fixation and fusion is a safe and effective procedure for treatment of atlantoaxial instabil ity.

    Release date:2016-08-31 04:23 Export PDF Favorites Scan
  • 寰枢椎前、后路固定对枢椎及齿突拉力的比较研究

    目的 比较前路经口寰枢椎复位钢板(transoral atlantoaxial reduction plate,TARP)系统与后路寰枢椎椎弓根钉棒系统对枢椎及齿突的最大下位力,为临床选择固定方式提供实验依据。 方法 取6 个男性新鲜尸体寰枢椎标本(C1、2)制备寰枢椎不稳模型后,分别采用TARP 系统(TARP 组)和寰枢椎椎弓根钉棒系统(椎弓钉棒组)固定,采用材料试验机测量前、后路固定系统对枢椎及齿突的最大下拉力。 结果 TARP 组和椎弓根钉棒组最大下拉力分别为(77.38 ± 16.10)N 和(39.31 ± 17.27)N,两组比较差异有统计学意义(t=17.106,P=0.000)。 结论 前路固定系统较后路固定系统对枢椎及齿突下拉力大,提示对于难复性寰枢椎脱位,从前路进行复位具有更可靠的复位效能。

    Release date:2016-08-31 04:23 Export PDF Favorites Scan
  • ONE-STAGE OPERATIVE TREATMENT OF ATLANTO-AXIAL INSTABILITY WITH STENOSIS OF LOWER CERVICAL LEVEL OF SPINAL CANAL

    To cure patients suffering from atlanto-axial instability following old fracture of odontoid process concomitant with stenosis of lower end of cervical spinal canal, a new operative method was designed. It included atlanto-axial fusion by Gallie technique and resection of right half of the laminae of C3-C7 spine at one stage. A female of 63 years old was treated. She was admitted with neck pain and numbness of the upper and lower limbs. A history of neck injury was noted in enquiry. In physical examination showed the sensation of pain of the upper limbs was decreased and the muscle power of the upper and lower limbs ranged from III degree to IV degree. The X-ray film and MRI suggested that there was instability of the atlanto-axial joint with stenosis of 4th-6th cervical spinal canal. The operation was satisfactory. After operation, the patient was followed up for 11 months. The physical examination indicated that sensation of the upper limbs had recovered to normal and the muscle power of the upper limbs reached IV degree and that the lower limbs reached V degree and X-ray showed bony fusion of the atlanto-axial joint. The conclusions were: 1. The stability of atlanto-axial joint was reconstructed with expanding of the spinal canal at the same time. 2. The duration, risk and cost of the therapy were reduced, and maintenance of the stability of the cervical spine throughout whole period of treatment was recommended.

    Release date:2016-09-01 11:07 Export PDF Favorites Scan
  • Biomechanical stability evaluation of the fixation technique for crossed rods consisting of occipital plate and C2 bilateral lamina screws

    ObjectiveTo evaluate the stability of the fixation technique for the crossed rods consisting of occipital plate and C2 bilateral lamina screws by biomechanical test.MethodsSix fresh cervical specimens were harvested and established an atlantoaxial instability model. The models were fixed with parallel rods and crossed rods after occipital plate and C2 bilateral laminae screws were implanted. The specimens were tested in the following sequence: atlantoaxial instability model (unstable model group), under parallel rods fixation (parallel fixation group), and under crossed rods fixation (cross fixation group). The range of motion (ROM) of the C0-2 segments were measured in flexion-extension, left/right lateral bending, and left/right axial rotation. After the test, X-ray film was taken to observe the internal fixator position.ResultsThe biomechanical test results showed that the ROMs in flexion-extension, left/right lateral bending, and left/right axial rotation were significantly lower in the cross fixation group and the parallel fixation group than in the unstable model group (P<0.05). There was no significant difference between the cross fixation group and the parallel fixation group in flexion-extension and left/right lateral bending (P>0.05). In the left/right axial rotation, the ROMs of the cross fixation group were significantly lower than those of the parallel fixation group (P<0.05). After the test, the X-ray film showed the good internal fixator position.ConclusionThe axial rotational stability of occipitocervical fusion can be further improved by crossed rods fixation when the occipital plate and C2 bilateral lamina screws are used.

    Release date:2021-01-07 04:59 Export PDF Favorites Scan
  • ANATOMIC STUDY ON ENTRY POINT AND IMPLANT TECHNIQUE FOR C2 PEDICLE SCREW FIXATION

    ObjectiveTo determine the entry point and screw implant technique in posterior pedicle screw fixation by anatomical measurement of adult dry samples of the axis so as to provide a accurate anatomic foundation for clinical application. MethodsA total of 60 dry adult axis specimens were selected for pedicle screws fixation. The entry point was 1-2 mm lateral to the crossing point of two lines: a vertical line through the midpoint of distance from the junction of pedicle medial and lateral border to lateral mass, and a horizontal line through the junction between the lateral border of inferior articular process and the posterior branch of transverse process. The pedicle screw was inserted at the entry point. The measurement of the anatomic parameters included the height and width of pedicle, the maximum length of the screw path, the minimum distance from screw path to spinal canal and transverse foramen, and the angle of pedicle screw. The data above were provided to determine the surgical feasibility and screw safety. ResultsThe width of upper, middle, and lower parts of the pedicle was (7.35±0.89), (5.50±1.48), and (3.97±1.01) mm respectively. The pedicle height was (9.94±1.16) mm and maximum length of the screw path was (25.91±1.15) mm. The angle between pedicle screw and coronal plane was (26.95±1.88)° and the angle between pedicle screw and transverse plane was (22.81±1.61)°. The minimum distance from screw path to spinal canal and transverse foramen was (2.72±0.83) mm and (1.98±0.26) mm respectively. ConclusionAccording to the anatomic research, a safe entry point for C2 pedicle screw fixation is determined according to the midpoint of distance from the junction of pedicle medial and lateral border to lateral mass, as well as the junction between the lateral border of inferior articular process and the posterior branch of transverse process, which is confirmed to be effectively and safely performed using the entry point and screw angle of the present study.

    Release date:2016-08-25 10:18 Export PDF Favorites Scan
  • Application of thin CT angiography of pedicle sagittal plane of axis for preoperative evaluation of pedicle screw placement procedure

    ObjectiveTo explore the application value of thin CT angiography (CTA) of pedicle sagittal plane of axis for preoperative evaluation planning pedicle screw placement.MethodsBetween February 2016 and August 2017, 34 patients (68 pedicles) who underwent thin CTA scan before posterior axial surgery were retrospectively analyzed. The vertebral artery development was statistically analyzed. The continuous layers of transverse process hole pedicle height more than or equal to 4 mm (f) were measured and read. The axial fixation methods, clinical manifestations of vertebral artery and spinal cord injury and the bone union of fractures or implants were recorded. Postoperative results of pedicle screws were evaluated by CT scan.ResultsThe right sides of 8 cases and the left sides of 18 cases were dominant vertebral arteries, and equilibrium was reached in 8 cases; f>9 layers were found in 16 pedicles,f=9 layers in 27 pedicles, f=8 layers in 17 pedicles, and f<8 layers in 8 pedicles. The 43 pedicles off≥9 layers used pedicle screw fixation; in the 17 pedicles of f=8 layers, 16 used pedicle screw fixation, and the other one used laminar screw fixation; in the 8 pedicles of f<8 layers, 4 used pedicle screw fixation, and the other 4 used laminar screw fixation. A self-defined pedicle screw grading system was used to evaluate the excellence, and the result showed that,f>9 layers: 14 pedicles were class A, 2 were class B, none was class C;f=9 layers: 16 pedicles were class A, 7 were class B, 4 were class C; f=8 layers: 3 pedicles were class A, 5 were class B, 8 were class C; f<8 layers: none was pedicles class A or class B, 4 were class C. The other 4 lamina screws fixation didn’'t invade the spinal canal. One case of pedicle class C showed clinical manifestations of mild dizziness and drowsiness. The patients were followed up for 6-11 months with an average of (8±3) months, and the fracture or bone graft fusion were observed after 6 months of following-up.ConclusionBased on preoperative CTA thin layer scanning, through measuring and reading continuous layers of transverse process hole pedicle height more than or equal to 4 mm, can effectively judge the security of axial pedicle screws in order to subsequently choose the reasonable operation methods so as to improve success rate and decrease surgical risk.

    Release date:2018-09-25 02:22 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content