west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "活性氧" 25 results
  • Thioredoxin-1: A potential target for prevention of heart-related reactive oxygen species injury

    Reactive oxygen species (ROS) play an important role in the pathogenesis of various cardiovascular diseases, by leading to cell apoptosis and thus causing organic injuries. Anti-ROS therapy is highly anticipated, but currently, there is still no appropriate prevention method. Studies have shown that thioredoxin (Trx), being a kind of significant endogenous antioxidant system, has excellent antioxidant capacity. Promotion of Trx can reduce key biomolecules to eliminate ROS or regulate many signaling pathways, thus resisting ROS injuries, which may be a new anti-ROS strategy. Therefore, we reviewed the research progress of Trx in cardiac antioxidant therapy to discuss its potential and possibility to be a target for prevention of heart-related ROS injury.

    Release date:2024-01-04 03:39 Export PDF Favorites Scan
  • Effects of bone morphogenetic protein 4 on migration and reactive oxygen species production of Müller cells by regulating SMAD9 expression

    ObjectiveTo investigate the effects of targeted regulation of SMAD9 expression by bone morphogenetic protein 4 (BMP4) on Müller cell migration, reactive oxygen species (ROS) generation and vascular endothelial growth factor (VEGF) expression. MethodsMüller cells cultured in vitro were divided into normal control group, BMP4 group, BMP4+ no-load plasmid group (BMP4+NC group) and BMP4+SMAD9 small interference plasmid group (BMP4+siSMAD9). Cells in BMP4 group, BMP4+NC group and BMP4+siSMAD9 group were induced by adding 100 ng/ml BMP4 into cell medium for 24 h. Subsequently, BMP4+NC group was transfected with empty plasmid. BMP4+siSMAD9 group was transfected with SMAD9 small interference plasmid for 48 h. The effect of BMP4 on Müller cell migration was determined by cell scratch test. The effect of BMP4 on the production of ROS in Müller cells was detected by flow cytometry. Western blots and real-time quantitative fluorescence polymerase chain reaction (qPCR) were used to detect the relative mRNA expression levels of glutamine synthetase (GS) and glial fibrinoacidic protein (GFAP) in Müller cells. VEGF expression in Müller cells was detected by immunofluorescence. One-way analysis of variance was used to compare groups. ResultsThe results of cell scratch test showed that the cell mobility of BMP4+siSMAD9 group was significantly lower than that of BMP4 and BMP4+NC group, and the difference was statistically significant (F=68.319, P<0.001). Flow cytomethods showed that the level of ROS in BMP4+siSMAD9 group was significantly lower than that in BMP4 and BMP4+NC group, and the difference was statistically significant (F=52.158, P<0.001). Western blot and qPCR results showed that the protein levels of GS and GFAP (F=42.715, 36.618) and mRNA relative expression levels (F=45.164, 43.165) in BMP4+siSMAD9 group were significantly lower than those in BMP4 and BMP4+NC group. The difference was statistically significant (P<0.01). The results of immunofluorescence detection showed that the intracellular VEGF fluorescence intensity in BMP4 group and BMP4+NC group was significantly higher than that in BMP4+siSMAD9 group, and the difference was statistically significant (F=46.384, P<0.05). ConclusionTargeted regulation of SMAD9 expression by BMP4 can up-regulate VEGF expression and promote the migration and ROS production of Müller cells.

    Release date:2023-09-12 09:11 Export PDF Favorites Scan
  • 活性氧簇对创口愈合过程中血管新生的影响

    活性氧族是一类氧衍生的代谢物,被广泛地认为是多种生理过程以及病理状态下关键的调节剂,在血管系统中主要由还原型辅酶Ⅱ氧化酶生成。慢性创口的愈合涉及2种不同形式的血管新生:血管发生(骨髓来源分化而成的循环内皮祖细胞形成)和血管生成(已存在血管局部内皮细胞的芽生而形成)。活性氧族通过对血管新生过程中所涉及的内皮祖细胞、内皮细胞和血管平滑肌细胞功能的调节,影响创口愈合。

    Release date: Export PDF Favorites Scan
  • Mogroside regulates the oxidative stress response of retinal pigment epithelial cells induced by H2O2 through silent information regulator of transcription 1/nuclear factor erythroid-2-related actor 2 signaling pathway

    Objective To observe and preliminarily explore the effect of mogroside on oxidative stress of retinal pigment epitheliaum (RPE) cells induced by hydrogen peroxide (H2O2) and its possible mechanism. MethodsA experimental study. The RPE cells were divided into control group, H2O2 group, silent information regulator of transcription 1 (SIRT1) inhibitor EX527 group (EX527 group), mogroside group, mogroside+EX527 group. Methyl thiazolete trazolium method was used to detect cell survival rate. Flow cytometry was used to detect cell apoptosis rate. 2',7'-dichlorodihydrofluorescein diacetate fluorescent probe method, xanthine method and enzyme-linked immunosorbent assay method were used to detect the level of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in cells respectively. Real-time quantitative polymerase chain reaction and Western blot were used to detect relative expressions of SIRT1, nuclear factor erythroid-2-related actor 2 (Nrf2), heme oxygenase-1 (HO-1) mRNA and protein in cells. One-way ANOVA was used for comparison among groups. The pairwise comparison between groups was tested by the least significant difference t test. Results Compared with the control group, the H2O2 group cell survival rate decreased, the apoptosis rate increased, the ROS level in the cells increased, the SOD activity decreased, the MDA content increased, and the relative expression of SIRT1, Nrf2, HO-1 mRNA and protein decreased (P<0.05). Compared with H2O2 group, the cell survival rate decreased, apoptosis rate increased, the cell ROS level increased, SOD activity decreased, MDA content increased, SIRT1, Nrf2, HO-1 mRNA and protein expression decreased in EX527 group (P<0.05); the cell survival rate increased, apoptosis rate decreased, ROS level decreased, SOD activity increased, MDA content decreased, and the relative expression of SIRT1, Nrf2, HO-1 mRNA and protein increased in mogroside group (P<0.05). Compared with the mogrosides group, the cell survival rate decreased, the apoptosis rate increased, the level of ROS increased, SOD activity decreased, MDA content increased, SIRT1, Nrf2, HO-1 mRNA and protein decreased in mogrosides+EX527 group (P<0.05). ConclusionsMogrosides can alleviate the oxidative stress response of visual RPE cells induced by H2O2, promote cell proliferation, and reduce cell apoptosis. Mogrosides may exert antioxidant effects by activating the SIRT1/Nrf2 signaling pathway.

    Release date:2023-08-17 08:49 Export PDF Favorites Scan
  • Islet biomimetic microenvironment constructed by chitosan oligosaccharide protects islets from hypoxia-induced damage by reducing intracellular reactive oxygen species

    ObjectiveGelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA)/chitosan oligosaccharide (COS) hydrogel was used to construct islet biomimetic microenvironment, and to explore the improvement effect of GelMA/HAMA/COS on islet activity and function under hypoxia. Methods Islets cultured on the tissue culture plate was set as the control group, on the GelMA/HAMA/COS hydrogel with COS concentrations of 0, 1, 5, 10, and 20 mg/mL respectively as the experimental groups. Scanning electron microscopy was used to observe the microscopic morphology, rheometer test to evaluate the gel-forming properties, contact angle to detect the hydrophilicity, and the biocompatibility was evaluated by the scaffold extract to L929 cells [using cell counting kit 8 (CCK-8) assay]. The islets were extracted from the pancreas of 8-week-old Sprague Dawley rats and the islet purity and function were identified by dithizone staining and glucose-stimulated insulin secretion (GSIS) assays, respectively. Islets were cultured under hypoxia (1%O2) for 24, 48, and 72 hours, respectively. Calcein-acetyl methyl/propidium iodide (Calcein-AM/PI) staining was used to evaluate the effect of hypoxia on islet viability. Islets were cultured in GelMA/HAMA/COS hydrogels with different COS concentrations for 48 hours, and the reactive oxygen species kits were used to evaluate the antagonism of COS against islet reactive oxygen species production under normoxia (20%O2) and hypoxia (1%O2) conditions. Calcein-AM/PI staining was used to evaluate the effect of COS on islet activity under hypoxia (1%O2) conditions. Islets were cultured in tissue culture plates (group A), GelMA/HAMA hydrogels (group B), and GelMA/HAMA/COS hydrogels (group C) for 48 hours, respectively. Immunofluorescence and GSIS assays were used to evaluate the effect of COS on islet activity under hypoxia (1%O2) conditions, respectively. Results GelMA/HAMA/COS hydrogel had a porous structure, the rheometer test showed that it had good gel-forming properties, and the contact angle test showed good hydrophilicity. CCK-8 assay showed that the hydrogel in each group had good biocompatibility. The isolated rat islets were almost round, with high islet purity and insulin secretion ability. Islets were treated with hypoxia for 24, 48, and 72 hours, Calcein-AM/PI staining showed that the number of dead cells gradually increased with time, which were significantly higher than those in the non-hypoxia-treated group (P<0.001). Reactive oxygen staining showed that GelMA/HAMA/COS hydrogels with different COS concentrations could antagonize the production of reactive oxygen under normal oxygen and hypoxia conditions, and this ability was positively correlated with COS concentration. Calcein-AM/PI staining indicated that GelMA/HAMA/COS hydrogels with different COS concentrations could improve islet viability under hypoxia conditions, and cell viability was positively correlated with COS concentration. Immunofluorescence staining showed that GelMA/HAMA/COS hydrogel could promote the expression of islet function-related genes under hypoxia conditions. GSIS assay results showed that the insulin secretion of islets in hypoxia condition of group C was significantly higher than that of groups B and C (P<0.05). Conclusion GelMA/HAMA/COS hydrogel has good biocompatibility, promotes islet survival and function by inhibiting reactive oxygen species, and is an ideal carrier for building islet biomimetic microenvironment for islet culture and transplantation.

    Release date:2022-06-08 10:32 Export PDF Favorites Scan
  • Interleukin-8 antagonist down regulates the adhesion and migration of retinal vascular endothelial cells by inhibiting the production of reactive oxygen species

    ObjectiveTo observe the effect of interleukin-8 (IL-8) on the adhesion and migration of retinal vascular endothelial cells (RCEC). MethodsA cell experiment. Human RCEC (hRCEC) was divided into normal control group (N group), advanced glycation end product (AGE) treatment group (AGE group), and AGE-induced combined IL-8 antagonist SB225002 treatment group (AGE+SB group). The effect of AGE on IL-8 expression in hRCEC was observed by Western blot. The effect of SB225002 on hRCEC migration was observed by cell scratch assay. The effects of SB225002 on leukocyte adhesion and reactive oxygen species (ROS) on hRCEC were detected by flow cytometry. Student-t test was performed between the two groups. One-way analysis of variance was performed among the three groups. ResultsCompared with group N, the expression level of IL-8 in cells of AGE group was significantly increased, with statistical significance (t=25.661, P<0.001). Compared with N group and AGE+SB group, cell mobility in AGE group was significantly increased (F=29.776), leukocyte adhesion number was significantly increased (F=38.159, 38.556), ROS expression level was significantly increased (F=22.336), and the differences were statistically significant (P<0.05). ConclusionIL-8 antagonist SB225002 may down-regulate hRCEC adhesion and migration by inhibiting ROS expression.

    Release date:2023-11-16 05:57 Export PDF Favorites Scan
  • Research progress on mitophagy in epilepsy

    Epilepsy is a heterogeneous disease with a very complex etiological mechanism, characterized by recurrent and unpredictable abnormal neuronal discharge. Epilepsy patients mainly rely on oral antiseizure medication (ASMs) the for treatment and control of disease progression. However, about 30% patients are resistance to ASMs, leading to the inability to alleviate and cure seizures, which gradually evolve into refractory epilepsy. The most common type of intractable epilepsy is temporal lobe epilepsy. Therefore, in-depth exploration of the causes and molecular mechanisms of seizures is the key to find new methods for treating refractory epilepsy. Mitochondria are important organelles within cells, providing abundant energy to neurons and continuously driving their activity. Neurons rely on mitochondria for complex neurotransmitter transmission, synaptic plasticity processes, and the establishment of membrane excitability. The process by which the autophagy system degrades and metabolizes damaged mitochondria through lysosomes is called mitophagy. Mitophagy is a specific autophagic pathway that maintains cellular structure and function. Mitochondrial dysfunction can produce harmful reactive oxygen species, damage cell proteins and DNA, or trigger programmed cell death. Mitophagy helps maintain mitochondrial quality control and quantity regulation in various cell types, and is closely related to the occurrence and development of epilepsy. The imbalance of mitophagy regulation is one of the causes of abnormal neuronal discharge and epileptic seizures. Understanding its related mechanisms is crucial for the treatment and control of the progression of epilepsy in patients.

    Release date:2024-07-03 08:46 Export PDF Favorites Scan
  • Progress on the role of nuclear factor-erythroid 2-related factor 2 in regulating cell proliferation

    Nuclear factor-erythroid 2-related factor 2 (Nrf2) is an important factor for cells to resist oxidative stress and electrophilic attack. It is involved in the formation and control of oxidative stress defense pathways. It is associated with oxidative stress-related diseases, including cancer, neurodegenerative diseases, cardiovascular diseases and aging, and is a potential pharmacological target for the treatment of chronic diseases. This article will review the important role of Nrf2 in the regulation of cell proliferation, including direct regulation of cell proliferation, regulation of reactive oxygen species, intracellular metabolism, regulation of mitochondrial function, cell lifespan and inflammatory response. The aim is to provide a theoretical basis for further research on how to use Nrf2 to regulate cell proliferation.

    Release date:2020-02-03 02:30 Export PDF Favorites Scan
  • Molecular mechanism of metastasis-associated protein 3 involvement in glioma drug resistance through reactive oxygen

    ObjectiveTo investigate the molecular mechanism by which metastasis-associated protein 3 (MTA3) participates in glioma resistance through reactive oxygen species. Methods Protein expression in glioma stem cells (GSCs) and non-GSCs was detected using Western blotting. GSCs included U87 and SHG44 cells, while non-GSCs included U87s and SU-2 cells. After overexpressing MTA3, U87 and SHG44 cells were divided into Lv-scr and Lv-MTA3 groups. The self-renewal capacity of glioma cells was assessed through a neurosphere formation assay. Cell survival fractions were examined following exposure to 0, 2, 4, 6, 8, and 10 Gy X-ray irradiation under normoxic or hypoxic conditions. Apoptosis and reactive oxygen species expression were analyzed using flow cytometry. Immunofluorescence staining was performed to detect the stem cell markers CD133 and nestin, as well as the differentiation markers glial fibrillary acidic protein (GFAP, for astrocytes) and neuronal class Ⅲ β-tubulin. Results In GSCs, MTA3 expression was lower in the U87s and SU-2 groups. After MTA3 overexpression, Lv-MTA3 expression was higher in U87s and SU-2 compared to the Lv-scr group. Under normoxic or hypoxic conditions, U87 and SU-2 showed greater radioresistance compared to glioma cell lines U87 and SHG44. Compared to non-GSCs, basal reactive oxygen species formation was reduced in GSCs, while reactive oxygen species generation was increased in non-GSCs. Following exposure to different doses of X-rays under normoxic or hypoxic conditions, GSCs with MTA3 overexpression exhibited greater radiosensitivity than those with stable integration. Additionally, MTA3 overexpression slightly increased the oxygen enhancement ratio (OER) in GSCs. MTA3 overexpression reduced the immunoreactivity of CD133 and nestin in both stem cell lines, and increased immunofluorescence staining of GFAP and neuronal class Ⅲ β-tubulin, with statistically significant differences (P<0.05). Conclusions MTA3 is downregulated in GSCs. Overexpression of MTA3 reduces the radioresistance and stemness of GSCs both in vitro and in vivo. MTA3 plays a crucial role in regulating the radiosensitivity and stemness of GSCs through reactive oxygen species.

    Release date:2024-06-24 02:56 Export PDF Favorites Scan
  • High Glucose Promotes Heme Oxygenase-1 Expression in Human Lung Epithelial Cellsvia Reactive Oxygen Species or TGF-β 1/PI3K/Akt Signaling Pathway

    Objective To investigate the expression of heme oxygenase-1 (HO-1) by high glucose treatment in human lung epithelial A549 cells. Methods The effect of high glucose on the expression of HO-1 in A549 cells was investigated with Western blot and reverse transcription PCR. HO-1 enzymic activity and reactive oxygen species (ROS) production were investigated with enzyme-linked immunosorbent test. Results Treatment with 25 mmol/L high glucose for 0, 24 h, 48 h, 72 h and in concentrations of 5 mmol/L, 10 mmol/L, 25 mmol/L, 40 mmol/L for 48 h induced increased expression on protein and mRNA level of HO-1 in a concentration- and time-dependent manner in A549 cells. High glucose treatment increased production of ROS and transforming growth factor-β1 (TGF-β1) in A549 cells, which thus mediated HO-1 expression. Following the increase in HO-1 expression, the enzymatic activity of HO-1 also increased in high glucose-treated cells. Pretreatment with N-acetyl-L-cysteine (NAC) and PI3K/Akt inhibitors attenuated the high glucose-induced increased HO-1 expression. Conclusions High glucose increases ROS and TGF-β1 production in A549 cells, which mediates HO-1 expression and increases HO-1 enzymic activity.

    Release date: Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content