“Valve-in-valve” technique is an effective method to treat the bioprosthesis structural valve degeneration. In this paper, an 82-year-old male patient with severe aortic valve regurgitation had underwent surgical aortic valve replacement. He had a bioprosthesis structural valve degeneration which caused severe aortic stenosis more than 3 years after surgery. His symptoms of chest distress and short breath were aggravated progressively, and not relieved by conventional treatment. As the deterioration in his unstabled circulation system, an emergency transcatheter aortic valve replacement was conducted for him. The operation was finally successful, the symptoms were relived significantly after operation, and then the follow-up indicated that he had a good recovery.
Biological valves can lead to structural valve degeneration (SVD) over time and due to various factors, reducing their durability. SVD patients need to undergo valve replacement surgery again, while traditional open chest surgery can cause significant trauma and patients often give up treatment due to intolerance. Research has shown that as an alternative treatment option for reoperation of thoracic valve replacement surgery, redo-transcatheter aortic valve replacement for SVD is safe and effective, but still faces many challenges, including prosthesis-patient mismatch, high cross valve pressure difference, and coronary obstruction. This article aims to review the strategies, clinical research status and progress of redo-transcatheter aortic valve replacement in SVD patients.
This article reports a case of a 70-year-old female patient who developed bioprosthetic mitral valve deterioration 4 months after her initial valve replacement surgery, manifesting as severe regurgitation and New York Heart Association Class Ⅲ. Due to the high risk of a redo open-heart surgery, she underwent a transapical transcatheter mitral valve-in-valve procedure. Intraoperatively, a J-Valve prosthesis was successfully implanted under echocardiographic and fluoroscopic guidance. Immediate transesophageal echocardiography confirmed an optimal valve position, complete resolution of regurgitation, and no significant paravalvular leak or left ventricular outflow tract obstruction. The patient's postoperative course was uneventful. She was extubated 16 hours post-procedure with significant improvement in cardiac function. Follow-up echocardiography showed normal prosthetic valve function.
Objective To summarize the short-term results of valve-in-valve transcatheter aortic valve implantation (ViV-TAVI) in the treatment of bioprosthetic valve failure after aortic valve replacement. Methods We reviewed the clinical data of patients who underwent ViV-TAVI from 2021 to 2022 in the First Affiliated Hospital of Zhengzhou University. The valve function was evaluated by echocardiography before operation, immediately after operation and 3 months after operation. The all-cause death and main complications during hospitalization were analyzed. Results A total of 13 patients were enrolled, including 8 males and 5 females with a mean age of (65.9±8.5) years, and the interval time between aortic valve replacement and ViV-TAVI was (8.5±3.4) years. The Society of Thoracic Surgeons mortality risk score was 10.3%±3.2%. None of the 13 patients had abnormal valve function after operation. The mean transvalvular pressure gradient of aortic valve was decreased (P<0.001), the peak flow velocity of aortic valve was decreased (P<0.001), and the left ventricular ejection fraction was not changed significantly (P=0.480). There were slight perivalvular leakage in 2 patients and slight valve regurgitation in 3 patients. Three months after operation, the mean transvalvular pressure difference and peak flow velocity of aortic valve in 12 patients were significantly decreased compared with those before operation (P≤0.001). Conclusion This study demonstrates that ViV-TAVI for the treatment of bioprosthetic valve failure after aortic valve replacement is associated with favorable clinical and functional cardiovascular benefits, the short-term results are satisfactory.
ObjectiveTo discuss the operation skill and clinical effects of using domestic balloon-expandable Prizvalve® transcatheter "valve-in-valve" to treat the degenerated bioprosthesis in the tricuspid position.MethodsAll the admitted surgical tricuspid valve bioprosthetic valve replacement patients were evaluated by computerized tomography angiography (CTA), ultrasound, and 3D printing technology, and 2 patients with a degenerated bioprosthesis were selected for tricuspid valve "valve-in-valve" operation. Under general anesthesia, the retro-preset Prizvalve® system was implanted into degenerated tricuspid bioprosthesis via the femoral vein approach under the guidance of transesophageal echocardiographic and fluoroscopic guidance.ResultsTranscatheter tricuspid valve implantation was successfully performed in both high-risk patients, and tricuspid regurgitation disappeared immediately. The operation time was 1.25 h and 2.43 h, respectively. There was no serious complication in both patients, and they were discharged from the hospital 7 days after the operation.ConclusionThe clinical effect of the degenerated tricuspid bioprosthetic valve implantation with domestic balloon-expandable valve via femoral vein approach "valve-in-valve" is good. Multimodality imaging and 3D printing technology can safely and effectively guide the implementation of this innovative technique.
ObjectiveTo summarize the results and clinical experience of transcatheter valve-in-valve implantation using domestic self-expanding valve in patients with aortic degenerated bio-prosthesis. MethodsFrom January 2019 to April 2023, the patients who underwent transcatheter valve-in-valve surgery in the Department of Cardiac Surgery of Tianjin Chest Hospital due to surgical bio-prosthesis failure were included. Characteristics of valves, perioperative complications, and hemodynamic manifestations during the early postoperative and follow-up period were analyzed. ResultsA total of 24 patients were enrolled, including 14 males and 10 females with an average age of 68.17±7.72 years, and the average interval between the two operations was 10.48±4.09 years. All patients were successfully discharged without complications such as coronary artery obstruction and pacemaker implantation, and the average transvalvular pressure gradient was 16.39±6.52 mm Hg before discharge. During the median follow-up time of 16 months, the left ventricular diastolic inner diameter and ejection fraction were continuously improved. ConclusionTranscatheter valve-in-valve using domestic self-expanding valves is safe and feasible to treat aortic bioprosthetic valve failure. Sound patient selection and surgical strategies are critical to achieve good hemodynamics.
ObjectiveTo evaluate the efficiency and safety of intraprocedural valve-in-valve deployment for treatment of aortic regurgitation following transcatheter aortic valve replacement (TAVR).MethodsConsecutive patients (n=333) who diagnosed with severe aortic stenosis and underwent TAVR in Zhongshan Hospital affiliated to Fudan University from October 3rd, 2010 to April 21st, 2021 were included. There were 208 males and 125 females aged 76.0±7.0 years. There were 316 patients underwent simple TAVR (simple TAVR group) and 17 patients underwent intraprocedural valve-in-valve deployment following TAVR (valve-in-valve group). Their clinical and echocardiographic outcomes were evaluated and compared.ResultsThere was no significant difference between the two groups of patients at postoperative 30 d and 1 year in all-cause mortality (4.4% vs. 0, P=1.000; 6.3% vs. 0, P=1.000), incidence of pacemaker implantation (10.4% vs. 17.6%, P=1.000; 11.8% vs. 17.6%, P=1.000), incidence of ischemic stroke (1.3% vs. 0, P=1.000; 1.3% vs. 0, P=1.000), mean trans-aortic pressure gradient (11.4±6.4 mm Hg vs. 8.9±4.9 mm Hg, P=0.099; 10.5±7.6 mm Hg vs. 11.2±5.2 mm Hg, P=0.432), left ventricular ejection fraction (62.0%±9.0% vs. 57.0%±12.0%, P=0.189; 63.0%±7.0% vs. 60.0%±8.0%, P=0.170), and incidence of mitral valve dysfunction (0.6% vs. 5.9%, P=1.000; 0.6% vs. 5.9%, P=1.000).ConclusionIt is feasible to treat perivalvular leakage with valve-in-valve technology in the procedure of TAVR, and the short and medium-term effects are satisfied.
Along with the coming of aged society, the prevalence of heart valvular disease is significantly increasing, and the use of bioprosthetic valves for treating patients with severe valve disease has increased over the last two decades. As a consequence, a growing number of patients with surgical bioprosthesis degeneration is predicted in the near future. In this setting, valve-in-valve (ViV) transcatheter aortic/mitral valve replacement (TAVR/TMVR) has emerged as an alternative to redo surgery. A deep knowledge of the mechanism and features of the failed bioprosthetic heart valve is pivotal to plan an adequate procedure. Multimodal imaging is fundamental in the diagnostic and pre-procedural phases. The immediate and mid-term clinical and hemodynamic results have demonstrated the safety and feasibility of ViV techniques, but the development of these techniques faces several specific challenges, such as coronary obstruction, potential post-procedural mismatch and leaflet thrombosis. This article reviews the current status and prospects of ViV-TAVR technology in the treatment for biological valve degeneration, and suggests that ViV-TAVR should be promoted and implemented in existing medical centers with good surgical aortic valve replacement experience, so as to provide better treatment for patients.
ObjectiveTo explore the short-term follow-up clinical effect of transcatheter valve-in-valve implantation treatment for mitral bioprosthesis deterioration.MethodsThe single center data of elderly patients with mitral valve bioprosthetic dysfunction who received transapical J-Valve intervention between January 2019 and May 2020 were reviewed and summarized. After the informed consent was signed, single lumen endotracheal intubation was performed under general anesthesia in hybrid operating room. The left intercostal small incision was used to explore the apical area. Fluoroscopy and three-dimensional esophageal ultrasound were used to guide the puncture needle. Then the guide wire entered the left atrium through the mitral valve biological valve. The catheter was exchanged, and the rigid support wire was exchanged. The reverse loaded J-Valve system was guided and implanted into the biological mitral valve with beating heart. The appropriate implantation depth was adjusted, and stent valve was released under rapid pacing. Post balloon dilation of the valve was performed if necessary.ResultsFrom January 2019 to May 2020, transcatheter J-Valve implantation was completed in 20 patients with mitral valve dysfunction and high-risk evaluation of routine thoracotomy and cardiopulmonary bypass (the Society of Thoracic Surgeon score above 6). In terms of the type of the the mitral bioprosthesis, there were 6 cases of Hancock valves, 7 cases of Perimount valves, 6 cases of Epic valves, and 1 case of Baxiter valve. In terms of the size of the the mitral bioprosthesis, there were 2 cases of size 29 valves, 11 cases of size 27 valves, and 7 cases of size 25 valves. One valve fell into the left ventricle at early stage. One patient had mild valve displacement during operation, and a second valve was implanted at the same time. The success rate of valve-in-valve implantation was 95%. The length of stay in intensive care unit was less than 6 h in 5 cases, 6-24 h in 13 cases, 24-48 h in 1 case, and more than 48 h in 1 case. No patient’s postoperative mitral regurgitation was moderate or above. The mean mitral valve pressure gradient was (5.2±2.3) mm Hg (1 mm Hg=0.133 kPa). Patients recovered well after the valve-in-valve implantation treatment, with no death within postoperative one month. One patient died of infection and multiple organ failure during follow-up after one month. Other patients recovered smoothly without serious complications.ConclusionsThe clinical effect of J-Valve intervention in the treatment of mitral valve bioprosthetic dysfunction through apical approach is good. The implantation can be completed under beating heart, avoiding cardiopulmonary bypass and routine thoracotomy cardiac arrest, which is worthy of further observation and follow-up.