One hundred and fifty cases were followed up after quadricepsplasty. Hamstring M. were used in 112 cases. M. rectus femoris or obliquis abdominis was used in 38 cases. The validity and force analysis of such two kinds of operation were analyzed and compared. It was confirmed that the power of the transferred muscle depended on the angle between the force line and the neutral axis of the joint, provided the arm of the force and the area of transection of the muscle were constant. The bigger the angle was, the longer the arm of the force was, and the smaller was the labour. If this angle was negative or the knee joint was in a position of flexion deformity, the smaller the negative angle was, the smaller the componend force of the joint was, and the larger was the component force of extension.
Objective To make a comparison for the change of maximum tensile intensity and stiffness of a whole implant that is placed into bone tunnel with various lengths tendon, by using beagle dog’s autogenous flexor tendons to reconstruct anterior cruciate l igament (ACL). Methods Sixty male beagle dogs were included in the experiment (weighting 13-16 kg). Three dogs were used for intact flexor tendon of both knees (normal control group), 3 dogs for the intact ACL andfemur-graft-tibia complex (auto control group) and 54 dogs (108 knees) for models of reconstructed ACL (6 experimentalgroups according to different lengths of tendon: 5, 9, 13, 17, 21 and 25 mm in the bone tunnel). The tensile intensity and stiffness were measured after 45, 90 and 180 days separately after operation. Results In the normal control group, the maximum tensile intensity of the intact flexor tendon was (564.15 ± 36.18) N, the stiffness was (59.89 ± 4.28) N/ mm. In the auto control group, the maximum tensile intensity of the intact ACL was (684.75 ± 48.10) N, the stiffness was (74.34 ± 6.99) N/ mm, all ruptured through the intra-articular portion of the graft. The maximum tensile intensity of femur-graft-tibia complex in the auto control group was (301.92 ± 15.04) N, the stiffness was (31.35 ± 1.97) N/mm. After 45 days of operation, all failure occurred at the tibial or femoral insertion site. After 90 days of operation, 24 of the breakpoints were scattered in tendon-bone junction, 12 (3 in 17 mm group, 5 in 21 mm group, 4 in 25 mm group) ruptured through the intra-articular portion. After 180 days of the operation, all breakpoints were distributed inside joint of the implant. The maximum tensile intensity and the stiffness were ber in 17, 21 and 25 mm groups than in 5, 9 and 13 mm groups after operation (P lt; 0.05). Conclusion Tendon with 17 mm length, which will be implanted into bone tunnel, is an appl icable index, in reconstruction of ACL by autogenous tendons.
Objective Anterior cruciate l igament (ACL) is an important forward stable structure of knees, when its function impaired, the normal mechanical environment of joint will be destroyed. Now, to explore the effect of ACL rupture on the posterior horn of lateral meniscus by measuring biomechanics. Methods Ten specimens of knee joints (5 left and 5 right sides asymmetrically) were donated voluntarily from 10 normal fresh adult male cadavers, aged 26-35 years with anaverage of 31.4 years. The straining of lateral meniscus posterior horn in 10 knee joint specimens before and after resection of ACL were tested when the knee joints loaded from 0 to 200 N at a velocity of 0.5 mm per second at 0, 30, 60, and 90° of flexion and recorded at the moment when the load was 200 N, the ratio of straining before and after resection of ACL were connted. All the specimens were anatomied and observed in general so as to find injuries such as deformation and tearing in lateral meniscus after test. Results The straining of lateral meniscus posterior horn were as follows: intact ACL group, (—11.70 ± 0.95) με at 0° flexion, (—14.10 ± 1.95) με at 30° flexion, (—20.10 ± 1.20) με at 60° flexion, and (—26.50 ± 1.58) με at 90° flexion; ACL rupture group, (—6.20 ± 1.55) με at 0° flexion, (—26.30 ± 1.89) με at 30° flexion, (—37.70 ± 1.64) με at 60° flexion, and (—46.20 ± 2.78) με at 90° flexion. There were significant differences between intact ACL group and ACL rupture group (P lt; 0.05). The straining ratio of the posterior horn of lateral meniscus rupture ACL to intact ACL were 0.53 ± 0.12, 1.90 ± 0.31, 1.88 ± 0.15, and 1.75 ± 0.16 at 0, 30, 60, and 90° of flexion. The lateral meniscus were intact in general and no injuries such as deformation and tearingwere found. Conclusion ACL has a significant biomechanical effect on posterior horn of lateral meniscus. Consequently, the posterior horn of lateral meniscus is overloaded with ACL rupture at 30, 60, and 90° of flexion, and thereby, it will have the high risk of tear.
Objective To investigate the influence of collagen on the biomechanics strength of tissue engineering tendon. Methods All of 75 nude mice were madethe defect models of calcaneous tendons, and were divided into 5 groups randomly. Five different materials including human hair, carbon fibre (CF), polyglycolic acid (PGA), human hair and PGA, and CF and PGA with exogenous collagen were cocultured with exogenous tenocytes to construct the tissue engineering tendons.These tendons were implanted to repair defect of calcaneous tendons of right hind limb in nude mice as experimental groups, while the materials without collagenwere implanted to repair the contralateral calcaneous tendons as control groups. In the 2nd, 4th, 6th, 8th and 12th weeks after implantation, the biomechanicalcharacteristics of the tissue engineering tendon was measured, meanwhile, the changes of the biomechanics strength were observed and compared. Results From the 2nd week to the 4th week after implantation, the experimental groups were ber than the control groups in biomechanics, there was statistically significantdifference (Plt;0.05). From the 6th to 12th weeks, there was no statisticallysignificant difference between the experiment and control groups (Pgt;0.05). Positivecorrelation existed between time and intensity, there was statistically significant difference (Plt;0.05). The strength of materials was good in human hair,followed by CF, and PGA was poor. Conclusion Exogenous collagen can enhance the mechanics strength of tissue engineering tendon, and is of a certain effect on affected limb rehabilitation in early repair stages.
In the present study, a finite element model of L4-5 lumbar motion segment was established based on the CT images and a combination with image processing software, and the analysis of lumbar biomechanical characteristics was conducted on the proposed model according to different cases of flexion, extension, lateral bending and axial rotation. Firstly, the CT images of lumbar segment L4 to L5 from a healthy volunteer were selected for a three dimensional model establishment which was consisted of cortical bone, cancellous bone, posterior structure, annulus, nucleus pulposus, cartilage endplate, ligament and facet joint. The biomechanical analysis was then conducted according to different cases of flexion, extension, lateral bending and axial rotation. The results showed that the established finite element model of L4-5 lumbar segment was realistic and effective. The axial displacement of the proposed model was 0.23, 0.47, 0.76 and 1.02 mm, respectively under the pressure of 500, 1 000, 1 500 and 2 000 N, which was similar to the previous studies in vitro experiments and finite element analysis of other people under the same condition. The stress distribution of the lumbar spine and intervertebral disc accorded with the biomechanical properties of the lumbar spine under various conditions. The established finite element model has been proved to be effective in simulating the biomechanical properties of lumbar spine, and therefore laid a good foundation for the research of the implants of biomechanical properties of lumbar spine.
Objective To simulate anterosuperior instabil ity of the shoulder by a combination of massive irreparable rotator cuff tears and coracoacromial arch disruption in cadaveric specimens, use proximally based conjoined tendon transfer forcoracoacromial l igament (CAL) reconstruction to restrain against superior humeral subluxation, and investigate its feasibility and biomechanics property. Methods Nine donated male-adult and fresh-frozen cadaveric glenohumeral joints were applied to mimic a massive irreparable rotator cuff tear in each shoulder. The integrity of the rotator cuff tendons and morphology of the CAL were visually inspected in the course of specimen preparation. Cal ipers were used to measure the length of the CAL’s length of the medial and the lateral bands, the width of coracoid process and the acromion attachment, and the thickness in the middle, as well as the length, width and thickness of the conjoined tendon and the lateral half of the removed conjoined tendon. The glenohumeral joints were positioned in a combination of 30° extension, 0° abduction and 30° external rotation. The value of anterosuperior humeral head translation was measured after the appl ication of a 50 N axial compressive load to the humeral shaft under 4 sequential scenarios: intact CAL, subperiosteal CAL release, CAL anatomic reattachment, entire CAL excision after lateral half of the proximally based conjoined tendon transfer for CAL reconstruction. Results All specimens had an intact rotator cuff on gross inspection. CAL morphology revealed 1 Y-shaped, 4 quadrangular, and 4 broad l igaments. The length of the medial and lateral bands of the CAL was (28.91 ± 5.56) mm and (31.90 ± 4.21) mm, respectively; the width of coracoid process and acromion attachment of the CAL was (26.80 ± 10.24) mm and (15.86 ± 2.28) mm, respectively; and the thickness of middle part of the CAL was (1.61 ± 0.36) mm. The length, width, and thickness of the proximal part of the proximally based conjoined tendon was (84.91 ± 9.42), (19.74 ± 1.77), and (2.09 ± 0.45) mm, respectively. The length and width of the removed lateral half of the proximally conjoined tendon was (42.67 ± 3.10) mm and (9.89 ± 0.93) mm, respectively. The anterosuperior humeral head translation was intact CAL (8.13 ± 1.99) mm, subperiosteal CAL release (9.68 ± 1.97) mm, CAL anatomic reattachment (8.57 ± 1.97) mm, and the lateral half of the proximally conjoined tendon transfer for CAL reconstruction (8.59 ± 2.06) mm. A significant increase in anterosuperior migration was found after subperiosteal CAL release was compared with intact CAL (P lt; 0.05). The translation after CAL anatomic reattachment and lateral half of the proximally conjoined tendon transfer for CAL reconstruction increased over intact CAL, though no significance was found (P gt; 0.05); when they were compared with subperiosteal CAL release, the migration decreased significantly (P lt; 0.05). The translation of lateral half of the proximally conjoined tendon transfer for CAL reconstruction increased over CAL anatomic reattachment, but no significance was evident (P gt; 0.05). Conclusion The CAL should be preserved or reconstructed as far as possible during subacromial decompression, rotator cuff tears repair, and hemiarthroplasty for patients with massive rotator cuff deficiency. If preservation or the insertion reattachment after subperiosteal release from acromion of the CAL of the CAL is impossible, or CAL is entirely resected becauseof previous operation, the use of the lateral half of the proximally based conjoined tendon transfer for CAL reconstruction isfeasible.
To provide the scientific theoretical basis for cl inical practice by comparing biomechanicalcharacteristics of single compressed plate with intramedullary pin, locking intramedullary nail and simple arm externalfixator with simple internal fixation devices. Methods Eighteen wet humeral bone specimens of adult cadaver were madecompl icated fracture models of humeral shaft and divided into 3 groups according to fixation methods. Fracture was fixed by single compressed plate with intramedullary pin in plate group, by locking intramedullary nail in intramedullary nail group and by external fixator with simple internal fixation devices in external fixator group. The intensity and rigidity of compl icated fracture models of humeral shaft was measured in compress test and torsion test. Results In compress test, the maximum load in plate group (6 162.09 ± 521.06) N and in intramedullary nail group (6 738.32 ± 525.89) N was significantly larger than that in external fixator group (2 753.57 ± 185.59) N (P lt; 0.05); but there was no significant difference between plate group and intramedullary nail group (P gt; 0.05). Under 600 N physiological compress load, the rigidity was (171.69 ± 6.49) N/mm in plate group, (333.04 ± 36.85) N/mm in intramedullary nail group and (132.59 ± 2.93) N/mm in external fixator group; showing no significant difference between plate group and external fixator group (P gt; 0.05), and showing significant difference between intramedullary nail group and plate, external fixator groups (P lt; 0.05). In torsion test, the maximum torque in plate group (38.24 ± 7.08) Nm was significantly larger than those in intramedullary nail group (17.12 ± 5.73) Nm and external fixator group (20.26 ± 6.42) Nm (P lt; 0.05), but there was no significant difference between intramedullary nail group and external fixator group (P gt; 0.05). Under 0.80 Nm physiological torque, the rigidity was (16.36 ± 2.07) Ncm/° in plate group and (18.79 ± 2.62) Ncm/° in external fixator group, which was significantly larger than that in intramedullary nail group (11.45 ± 0.22) Ncm/° (P lt; 0.05); but there was no significant difference between plate group and external fixator group (P gt; 0.05). Conclusion Those fracture models fixed by single compressed plate with intramedullary pin have better compress and torsion intensity, they also have better torsion rigidity but less compress rigidity. Those fracture models fixed by locking intramedullary nail have better compress intensity but less torsion intensity, they also have better compress rigidity but less torsion rigidity. Those fracture models fixed by external fixator with simple internal fixation device have less compress and torsion intensity, they also have less compress rigidity but better torsion rigidity.
Objective To research the biomechanical effect of different length bone plates on treatment of tibial shaft fracture. Methods Forty-five tibia specimens from fresh adult corpse (20-40 years old) were donated (30-38 cm in length, 34 cm on average) and were divided into 3 groups randomly (n=15). Under the following three conditions, the experiment was made separately. Compression stress-strain indexes of whole tibia were determined under the reverse, three spots curving and compression. The vertical elastic strain was 0-1 000 N, the reverse angle was 0-3º, and three bending stresswas 0-400 N. Then the center-section squint non-damage bone fracture model was made, fracture was fixed by 6, 10, 14stainless steel AO LC-DCP, respectively. The compression stress-strain indexes were determined under reverse angle, three spots curving and compression, statistical analysis was done. Results The vertical direction strain value of 6, 10 and 14 hole steel plate under vertical compressions, was 0.449 ± 0.241, 0.093 ± 0.003, 0.139 ± 0.005, respectively ; showing significant difference between 10 and 14 hole steel plates and 6 steel plate (P lt; 0.01) and no significant difference between 10 and 14 hole steel plate (P gt; 0.05). The lateral strain value of 6, 10 and 14 hole steel plate was 0.120 0 ± 0.000 4, 0.127 5 ± 0.010 0, 0.237 0 ± 0.000 6 respectively, indicating a significant difference between stell plates of 6 and 10 hole and 14 hole steel plate (P lt; 0.01) and no difference between 6 and 10 hole steel plate (P gt; 0.05). The torque of 6, 10 and 14 hole steel plate was (5.066 ± 2.715) × 10-3, (5.671 ± 2.527) × 10-3 and (4.570 ± 2.228) × 10-3 Nm, respectively and three spot curving vertical direction strain value was 0.049 ± 0.009, 0.124 ± 0.017, 0.062 ± 0.009, respectively. There were significant differences between various steel plates (P lt; 0.01). Conclusion For the fixation of tibial obl ique fracture, 14 hole steel plate’s stabil ities of anti-vertical compression, anti-reverse and anti-curving are better than those of 6 hole steel plate under the condition of the same material qual ity, thickness, width and screw quantity used.
摘要:目的:研究生物降解聚DL乳酸(PDLLA)自锁式捆绑带固定骨折的生物力学性能。方法:80只新西兰大白兔随机分为两组,建立股骨干非负重骨折动物模型,应用生物降解自锁式捆绑带固定骨折为实验组,钢丝固定骨折为对照组,分别于术后1、4、8、12周行生物力学检查进行比较。结果:捆绑带组在术后4、8、12周均比钢丝组的弯曲强度高,但4周、12周时Pgt;005,无统计学差异,8周时Plt;005,提示有统计学差异。离体同种固定物不同时间段抗拉强度自身比较:钢丝固定术后4阶段抗拉强度比较Pgt;005,任何两两比较都没有统计学差异,抗拉强度未随术后时间延长发生明显下降。捆绑带固定术后4周与术后1周比较Pgt;005,抗拉强度无明显降低,但术后8周和术后12周时Plt;005,抗拉强度明显下降。结论:生物降解自锁式捆绑带在非负重骨折治疗中可发挥良好的固定作用。生物降解自锁式捆绑带降解时,应力传导促进了骨折的愈合。Abstract: Objective: To study the biomechanics function of selflocking cerclage band made of biodegradable material polyDLlactic acid (PDLLA) in the fixation of fractures. Methods: Eighty rabbits were divided into two groups. Femur fracture models were made. Fractures were fixed using biodegradable selflocking cerclage band in experimental group and metal fixation material in control group. The biomechanics was analyzed and compared after 1, 4, 8 and 12 weeks respectively. Results: The bending strength of experimental group is more ber than that of control group after 4, 8 and 12 weeks, but it was not statistically significant at 4 and 12 weeks (Pgt;005). It was statistically significant at 8 weeks (Plt;005). The tensile strength of the same cerclage instrument was compared at different stage in vitro, and the result of the control group was not statistically significant at the four stage (〖WTBX〗P〖WTBZ〗gt;005). Regarding the changes of tensile strength of the cerclage instrument at different stage, the result of the experimental group was not statistically significant after 1 and 4 weeks (Pgt;005). However, the decrease of tensile strength was statistically significant after 8 and 12 weeks (Plt;005). Conculsion: Biodegradable selflocking cerclage band could be used in thetreatment of nonweightbearing fractures. The stress force conducting promotes healing of fracture when the selflocking biodegradable cerclage band degrades.
ObjectiveTo compare the biomechanical characteristics of self-made nickel-titanium shape memory alloy stepped plate with calcaneal plate and cannulated compression screws in fixing calcaneal osteotomy.MethodsCalcaneal osteotomy was operated on 6 fresh-frozen lower limbs collected from donors. Then three kinds of fixation materials were applied in random, including the self-made nickel-titanium shape memory alloy stepped plate (group A), calcaneal plate (group B), and cannulated compression screws (group C). Immediately after fixation, axial loading of 20-600 N and 20 N/s in speed was introduced to record the biomechanical data including maximum displacement, elastic displacement, and maximum load. Then fatigue test was performed (5 Hz in frequency and repeat 3 000 times) and the same axial loading was introduced to collect the biomechanical data. Finally, the axial compression stiffness before and after fatigue test were calculated.ResultsThere was no significant difference in the axial compression stiffness between pre- and post-fatigue test in each group (P>0.05). However, the axial compression stiffness was significant higher in group A than that in groups B and C both before and after fatigue test (P<0.05). No significant difference was found between group B and group C (P>0.05).ConclusionSelf-made nickel-titanium shape memory alloy stepped plate is better than calcaneal plate and cannulated compression screws in axial load stiffness after being used to fix calcaneal osteotomy.