ObjectiveTo explore the effects of burn ward cleaning methods on multi-drug resistant bacteria infection, in order to improve and optimize the cleaning process and method. MethodsFrom November 2012 to October 2013, the cleaning and disinfection methods in our burn wards were regarded as the traditional cleaning methods, and from November 2013 to October 2014, the cleaning and disinfection methods were called the improved cleaning methods (new system cleaning methods). By retrospective analysis, we compared the infection rates of multi-drug resistant bacteria before and after the implementation of the new system cleaning methods. ResultsNew system methods were used in the ward environment cleaning and disinfection. The infection rate of multi-drug resistant bacteria before and after the implementation of the new system cleaning methods were 12.414‰ and 5.922‰ respectively. The methicillin resistant Staphylococcus aureus infection rate was 7.286‰ and 3.718‰, and the carbon-resistant Pseudomonas aeruginosa infection rate was 2.699‰ and 0.689‰. Both differences were significant (P < 0.05). The carbon-resistant Acinetobacter baumanii infection rate was 2.429‰ and 1.515‰ before and after the implementation of the new methods with no significant difference (P > 0.05). ConclusionAdopting new system to carry out cleaning can effectively reduce the infection rate of multi-drug resistant bacteria in the burn ward, and it is worthy of clinical popularization and application.
目的 对烧伤层流病房多重耐药菌感染的相关因素进行分析,通过护理干预来预防和减少烧伤病房多重耐药菌感染的发生。 方法 回顾性分析2011年1月-12月收治的629例烧伤患者,其中发生多重耐药菌感染74例,感染率为11.8%。 结果 感染部位:创面分泌物培养感染占70.2%,痰液标本培养感染占9.4%,血液标本培养感染占16.2%,其他占4.2%。感染病原菌:以金黄色葡萄球菌为主,占77.0%;鲍曼不动杆菌占4.2%,铜绿假单胞菌占10.8%,肺炎克雷伯菌占6.7%,真菌感染占1.3%。 结论 对发生医院内多重耐药菌感染的原因进行分析并及时采取相应的护理干预措施,及可行的医院感染管理控制措施,对烧伤患者预后有重要的意义,可有效降低院内感染率的发生。
ObjectiveTo observe the effect of target monitoring on the patients with ventilator-associated pneumonia (VAP) in intensive care unit (ICU), analyze the risk factors and take effective measures to reduce the VAP occurrence. MethodsTarget monitoring was performed on patients with ventilator in ICU from January to July 2013 (observation group), and they were compared with those patients accepting general comprehensive monitoring in ICU from January to July 2012 (control group). The incidence of VAP was compared between the two groups. ResultsThe incidence of VAP in the observation group and the control group was 21.73‰ and 53.33‰, respectively. There was a significant difference between the observation group and the control group (P<0.05). ConclusionFor patients undergoing mechanical ventilation, target monitoring can control the risk factors and incidence of VAP, adjust the interference in time, and improve the curing rate.
Objective To explore the effect of “net bottom” management in the control of device-associated infections (DAIs) in elderly patients by setting infection monitoring doctors and nurses in the emergency intensive care unit (EICU). Methods Elderly patients who aged≥60 years old admitted to the EICU of the First People’s Hospital of Lianyungang between April 2018 and March 2021 were selected as the research subjects. A “net bottom” management mode was established and implemented for the purpose of infection prevention and control, taking medical and other departments as the coordination and management subjects, and infection monitoring doctors and nurses as the core. The effectiveness of the management intervention was evaluated by comparing the incidences of DAIs in elderly patients, the compliance rates of medical staff in hand hygiene, and the consumption of hand sanitizer per bed day in EICU among the primary stage (from April 2018 to March 2019), intermediate stage (from April 2019 to March 2020), and later stage (from April 2020 to March 2021). Results During the primary stage, intermediate stage, and later stage, there were 540, 497, and 507 elderly inpatients in EICU monitored, respectively, and the incidences of nosocomial infections were 7.22% (39/540), 5.84% (29/497), and 4.14% (21/507), respectively, showing a decreasing trend (χ2trend=4.557, P=0.033). The incidences of ventilator-associated pneumonia, central line-associated bloodstream infections, and catheter-associated urinary tract infections decreased from 4.82‰, 2.53‰, and 0.95‰, respectively in the primary stage, to 0.51‰, 1.01‰, and 0.53‰, respectively in the later stage, among which the difference in the incidence of ventilator-associated pneumonia was statistically significant (P<0.05). The hand hygiene compliance rate of EICU medical staff increased from 70.39% to 86.67% (P<0.05), and the consumption of hand sanitizer per bed day increased from 33.70 mL to 67.27 mL. The quarterly hand hygiene compliance rate was positively correlated with the quarterly consumption of hand sanitizer per bed day (rs=0.846, P=0.001), and negatively correlated with the quarterly incidence of nosocomial infections (rs=–0.769, P=0.003). Conclusion The “net bottom” management by setting up infection monitoring doctors and nurses in the EICU and multi-department collaboration can reduce the incidence of DAIs in elderly patients in EICU, which plays a positive role in promoting the hospital infection management and improving the quality of hospital infection management.
Objective To summarize the experience of preparation and administration of medical materials for the daytime-sickroom during the treatment of patients who were injured during Wenchuan earthquake in order to supply management experience for future emergency situations. Methods Data concerning the preparation and administration of medical materials and medical treatment for the daytime-sickroom were collected systematically. Results The high level of activity and order during the rescue provided quality care to patients injured in the earthquake. All 224 patients were treated effectively from May 12-29.Conclusion The daytime-sickroom acts as a combination sickroom, which allowed flexibility. The daytime-sickroom can manage medical materials and succesfully insure the treatement of patients when emergent events happen.
Objective To evaluate the sedative and analgesic efficacy and adverse effect of dexmedetomidine versus propofol on the postoperative patients in intensive care unit (ICU). Methods The relevant randomized controlled trials (RCTs) were searched in The Cochrane Library, MEDLINE, PubMed, SCI, SpringerLinker, ScinceDirect, CNKI, VIP, WanFang Data and CBM from the date of their establishment to November 2011. The quality of the included studies was evaluated after the data were extracted by two reviewers independently, and then the meta-analysis was performed by using RevMan 5.1. Results Ten RCTs involoving 793 cases were included. The qualitative analysis results showed: within a certain range of dosage as dexmedetomidine: 0.2-2.5 μg/(kg·h), and propofol: 0.8-4 mg/(kg·h), dexmedetomidine was similar to propofol in sedative effect, but dexmedetomidine group needed smaller dosage of supplemental analgesics during the period of sedative therapy. The results of meta-analysis showed: the percentage of patients needing supplemental analgesics in dexmedetomidine group was less than that in propofol group during the period of sedative therapy (OR=0.24, 95%CI 0.08 to 0.68, P=0.008). Compared with the propofol group, the duration of ICU stay was significantly shorter in the dexmedetomidine group (WMD= –1.10, 95%CI –1.88 to –0.32, P=0.006), but the mechanical ventilated time was comparable between the two groups (WMD=0.89, 95%CI –1.15 to 2.93, P=0.39); the incidence of adverse effects had no significant difference between two groups (bradycardia: OR=3.57, 95%CI 0.86 to 14.75, P=0.08; hypotension: OR=1.00, 95%CI 0.30 to 3.32, P=1.00); respiratory depression seemed to be more frequently in propofol group, which however needed further study. Mortalities were similar in both groups after the sedative therapy (OR=1.03, 95%CI 0.54 to 1.99, P=0.92). Conclusion Within an exact range of dosage, dexmedetomidine is comparable with propofol in sedative effect. Besides, it has analgesic effect, fewer adverse effects and fewer occurrences of respiratory depression, and it can save the extra dosage of analgesics and shorten ICU stay. Still, more larger-sample, multi-center RCTs are needed to provide more evidence to support this outcome.
Objective To investigate the species distribution and antibiotic resistance among the bloodstream infections in intensive care unit ( ICU) . Methods A retrospective analysis was performed to review the microbiological and susceptibility test data of all bloodstream infections in ICU from January 2004 to September 2009. The patterns of antibiotic resistance among the top five bacteria were compared. Results 89 cases of bloodstream infection were detected with 112 strains, including 55 Gram-positive ( G+ ) bacteria( 49. 1% ) , 55 Gram-negative ( G- ) bacteria ( 49. 1% ) , and 2 fungi ( 1. 8% ) . The main pathogens causing bloodstream infection were Burkholderia spp. ( 33, 29. 5% ) , S. epidermidis( 31, 27. 7% ) , Klebsiella pneumoniae ( 7, 6. 3% ) , S. aureus ( 7, 6. 3% ) , S. hominis ( 6, 5. 4% ) , Acinetobacter baumannii ( 6,5. 4% ) , Pseudomonas aeruginosa( 5, 4. 5% ) and S. haemolyticus( 5, 4. 5%) , suggesting that Burkholderia spp. was predominant pathogenic G- bacteria, and coagulase-negative staphylococcus was predominant G+ bacteria. The antibiotic resistance tests demonstrated that isolated G- bacillus was highly sensitive to carbopenem, while vancomycin-resistant G+ cocci were not found. Conclusions Within the latest 5 years,the prevalence of G+ bacteria infection is almost equivalent to G- bacteria in blood stream infection.Coagulase-negative staphylococcus is the mainly G+ bacteria and Burkholderia spp. is predominant in G- bacteria. Carbopenemand glycopeptides still remain to be the first choice.