ObjectiveTo explore the diagnostic value of ultrasound elastography (USE) combined with long non-coding RNA actin filament associated protein 1 anti-sense RNA 1 (AFAP1-AS1) mRNA in thyroid fine-needle aspiration (FNA) wash-out fluid for distinguishing benign from malignant thyroid nodules. MethodsThe patients with thyroid nodules who were treated in the Shenzhen Futian District Second People’s Hospital from January 2020 to June 2022 were collected. Before operation, the patients’ thyroid nodules were evaluated by the USE score and the AFAP1-AS1 mRNA in the thyroid FNA wash-out fluid was detected. The pathological result of the thyroid nodule after operation was as a gold standard for diagnosis of malignant thyroid nodules. The clinical diagnostic value of USE score combined with AFAP1-AS1 mRNA in the FNA wash-out fluid of the benign and malignant thyroid nodules were analyzed. ResultsA total of 174 thyroid nodules (124 patients) were detected in this study, of which 62 (45 patients) were histologically diagnosed as malignant. There was a statistical difference in the comparison of the composition ratio of USE score grading between the benign and malignant thyroid nodules (Z=8.82, P<0.001). The point of USE of the benign thyroid nodules was statistically lower than that of the malignant thyroid nodules [2.28±1.16 vs. 4.26±1.01, mean difference (MD) and 95% confidence interval (95%CI)=2.98 (2.76, 3.20), t=30.85, P<0.001]. The AFAP1-AS1 mRNA in the FNA wash-out fluid of the malignant thyroid nodules was statistically higher than that of the benign thyroid nodules [1.45±0.27 vs. 1.13±0.16, MD (95%CI)=1.45(1.39, 1.50), t=10.69, P<0.001]. Pearson correlation analysis showed that there was a positive correlation between the USE score of thyroid nodules and the expression of AFAP1-AS1 mRNA in the FNA wash-out fluid (r=0.58, P<0.001). The sensitivity and specificity of USE score in combination with expression of AFAP1-AS1 mRNA in the FNA wash-out fluid for diagnosing the malignant thyroid nodules by receiver operating characteristic (ROC) curve was 93.5% and 88.4% respectively. The area under the ROC curve (95%CI) was 0.91 (0.86, 0.96). Conclusion According to preliminary results of this study, USE score combined with AFAP1-AS1 mRNA in the thyroid FNA wash-out fluid is more sensitive and shows a potential diagnostic performance than USE score or AFAP1-AS1 mRNA detection alone for distinguishing benign from malignant thyroid nodules.
Objective To dynamically study the formation of multidrug resistance(MDR) of human hepatocellular carcinoma cell SMMC-7721 induced by Adriamycin (ADM) and the role of multidrug resistance-associated protein(MRP) in its mechanisms.Methods Hepatocellular carcinoma cell SMMC-7721 was cultured in RPMI-1640 medium containing ADM with progressively increased concentration or directly cultured in medium containing different concentrations of ADM. Resistant index of drug-resistant variants of SMMC-7721 cell was determined by drawing cell dosage-reaction curves.Levels of MRP mRNA expression were detected by reverse transcription-polymerase chain reaction(RTPCR). Intracellular rubidomycin(DNR) concentration was examined by flow cytometry(FCM).Results With progressive increasing of ADM concentration in medium resistant index and levels of MRP mRNA expression were correspondingly increased but intracellular DNR concentration was markly reduced. When parental cells were directly cultured in medium containing different concentrations of ADM, the higher the ADM concentration, the higher the level of MRP mRNA expression, but intracellular DNR concentration was kept at the similar high level and most cells died. Conclusion ADM may progressively induce SMMC-7721 cell resistant to multiple chemotherapeutic drugs with reduced intracellular DNR accumulation associated with the overexpression of MRP gene.
ObjectiveTo investigate biofilm formation on the surface of silica gel by breast surgery clinical specimens of Staphylococcus epidermidis and to analyze the relationship between biofilm formation and icaA, icaD, and accumulation-associated protein (aap) gene. MethodsBetween December 2011 and January 2013, 44 strains of Staphylococcus epidermidis were isolated from the clinical specimens of the female patients who had no symptom of infection. The icaA, icaD, and aap genes were detected by PCR and 4 genotypic groups were divided:icaA+icaD+/aap+ group (group A), icaA+icaD+/aap- group (group B), icaA-icaD-/aap+ group (group C), and icaA-icaD-/aap- group (group D). Biofilms mass was semi-quantified by semi-quantitative adherence assay after 8, 12, 24, 30, and 36 hours of incubation. The thickness of biofilms was measured by confocal laser scanning microscope (CLSM) at 12 and 24 hours after incubation. The ultrastructure of biofilms was observed by scanning electron microscope (SEM) at 24 hours after incubation. ResultsPCR test showed that 13 strains were icaA+icaD+/aap+(group A), 12 strains were icaA+icaD+/aap-(group B), 16 strains were icaA-icaD-/aap+(group C), and 3 strains were icaA-icaD-/aap-(group D). In 29 strains which had bacterial biofilm formation (65.9%), there were 13 strains in group A, 7 strains in group B, 9 strains in group C, and 0 in group D. The result of semi-quantitative adherence assay showed no significant difference in the absorbance (A) values among 4 groups at 8 hours (P>0.05). The A values of groups A, B, and C were significantly higher than that of group D at 12-36 hours, and group A was significantly higher than groups B and C (P<0.05), but there was no significant difference between groups B and C (P>0.05). The results of CLSM showed that the thickness of biofilm in groups A, B, and C was significantly larger than that in group D at 12 and 24 hours after incubation (P<0.05), and the thickness of biofilm in group A was significantly larger than that in groups B and C (P<0.05), but there was no significant difference between groups B and C (P>0.05). The result of SEM showed that the mature biofilm could be observed on the surface of silica gel in groups A, B, and C, and the ultrastructure of biofilms in group A were the most abundant and extensive among 3 groups. The ultrastructure of biofilm in group B was similar to that in group C. No obvious biofilms formed in group D. ConclusionicaA, icaD, and aap genes all play key roles in the process for biofilm formation of Staphylococcus epidermidis. Futhermore, aap gene enhance the ability of biofilm-forming when aap and ica genes coexist, so the biofilm-forming ability of icaA+icaD+/aap+ is strongest.
Objective To investigate the effect of mitochondrial fission mediated by mitochondrial dynamics related protein 1 (DRP1) on glucose metabolism reprogramming in lung cancer cells, and the regulatory mechanism on phosphatidylinositol-3-kinases (PI3K)/protein kinase B (Akt) signaling pathway. Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect the mRNA expression of DRP1 in lung cancer tissue and lung cancer cells. Mitochondrial fission inhibitor (Mdivi-1) and Mdivi-1+PI3K/Akt signaling pathway activator 740Y-P were used to treat H1299 cells. Mitochondrial fission agonist (WY14643) + signal inhibitor LY294002 were used to intervene PC14 cells. The reagent kit was used to detect the glucose consumption, lactate release, and ATP production of each group of cells. 5-ethynyl-2-deoxyuridine (EdU) labeling experiment was used to detect the proliferation of cells in each group, and acridine orange/ethidium bromide (AO/EB) staining was used to detect the apoptosis of cells in each group. MitoTracker Red CMXRos was used to detect the mitochondrial morphology of each group of cells. Tetramethylrhodamine ethyl ester (TMRE) staining was used to detect the mitochondrial membrane potential of cells. Dihydroethidium (DHE) staining was used to detect the level of reactive oxygen species (ROS) in cells. Western blot was used to detect was used to detect the expression of pyruvate kinase M2 (PKM2), hexokinase 2 (HK2), phosphofructokinase-1 (PFK1), DRP1, phosphorylated DRP1 (p-DRP1), PI3K, Akt, phosphorylated PI3K (p-PI3K), and phosphorylated Ak t(p-Akt) in each group of cells. Results The mRNA expression of DRP1 was significantly increased in lung cancer tissue and lung cancer cells. Mdivi-1 promoted the development of lung cancer and exerts anticancer effects, while activating PI3K/Akt signaling could partially reverse the anticancer effects of Mdivi-1. WY14643 exerted a pro-cancer effect, and inhibiting PI3K/Akt signaling could partially reverse the pro-cancer effect of WY14643, and the differences were statistically significant (all P<0.05). Conclusions In lung cancer, the expression of DRP1 is significantly increased, and DRP1 affects the glycolysis process and proliferation performance of lung cancer cells by regulating the activation of PI3K/Akt signaling.
Objective To investigate the effect of chondroitinase ABC (ChABC) on the expression of growth associated protein 43 (GAP-43) and gl ial fibrillary acidic protein (GFAP) after spinal cord injury (SCI) in rats. Methods A total of 150 adult female SD rats, weighing 250-300 g, were randomly divided into ChABC treatment group (group A), sal ine treatment group (group B), and sham operation group (group C) with 50 rats in each group. In groups A and B, the rats were made the SCI models and were treated by subarachnoid injection of ChABC and sal ine; in group C, the rats were not treated as a control. At 1, 3, 7, 14, and 21 days after operation, the Basso, Beattie, and Bresnahan (BBB) score system was used toevaluate the motion function, and immunofluorescent histochemical staining was used to observe the expressions of GAP-43 and GFAP. Results At different time points, the BBB scores of groups A and B were significantly lower than those of group C (P lt; 0.05); there was no significant difference in BBB score between groups A and B after 1, 3, and 7 days of operation (P gt; 0.05), but the BBB score of group A was significantly higher than that of group B after 14 and 21 days of operation (P lt; 0.01). At different time points, the GAP-43 and GFAP positive neurons of groups A and B were significantly higher than those of group C (P lt; 0.05). After 14 and 21 days of operation, the GAP-43 positive neurons of group A were more than those of group B (P lt; 0.01). After 7, 14, and 21 days of operation, the GFAP positive neurons of group A were significantly less than those of group B (P lt; 0.01). Conclusion ChABC can degrade gl ial scar, improve the microenvironment of the injured region and enhance the expression of GAP-43, which promotes axonal growth and extension.
ObjectiveTo investigate the protective effect and the regulation mechanism of oxaloacetate (OAA) on myocardial ischemia reperfusion injury in rats. MethodsSixty rats, weight ranged from 200 to 250 grams, were randomly divided into 6 groups:a negative control group, a sham operation control group, a model control group, an OAA pretreatment myocardial ischemia-reperfusion model group (three subgroups:15 mg/kg, 60 mg/kg, 240 mg/kg). We established the model of myocardial ischemia reperfusion of rats and recorded the internal pressure of left ventricle (LVSP), the maximal rate of left ventricular pressure change (±dp/dtmax) and left ventricular end diastolic pressure (LVEDP). We restored reperfusion 180 minutes after ligating the left anterior descending coronary artery 30 minutes and determinated cardiac troponin Ⅰ (cTn-I), lactate dehydrogenase (LDH), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px). We took out heart tissues, stained it and calculated the infarcted size. We used the Western blot to detect the expression of NF-E2 related factor 2 (Nrf2), Kelch-like ECH-associated protein-1 (Keap1) and heme oxygenase-1 (HO-1). ResultsCompared with the sham operation group, heart function indexes in the negative control group had no significant difference (P>0.05). But in the model control group there was a decrease (P<0.05) And the serum levels of LDH, cTn-I, and myocardial infarcted size were significantly increased (P<0.01). Compared with the model control group, heart function indexes in the OAA pretreatment groups improved, the serum LDH, cTn-I activity, and infarct size decreased (P<0.05), SOD and GSH-Px activity increased (P<0.05). And these results were statistically different (P<0.01) in the high dose OAA pretreatment groups. Compared with the model control group, the expression of Keap1 in the OAA pretreatment group was down-regulated (P<0.001) while total Nrf2, nucleus Nrf2 and its downstream HO-1 was up-regulated (P<0.001), which suggested that OAA enhanced antioxidant capacity by (at least in part) Keap1-Nrf2 pathway, resulting in reducing myocardial damage and protecting myocardium after acute myocardial ischemia reperfusion injury. ConclusionOxaloacetate can provide protective effects on myocardial ischemia reperfusion injury through down-regulating the expression of Keap1 and up-regulating the expression of Nrf2 and its downstream peroxiredoxins to improve antioxidant capacity.
The binding of talin-F0 domain to ras-related protein 1b (Rap1b) plays an important role in the formation of thrombosis. However, since talin is a force-sensitive protein, it remains unclear whether and how force regulates the talin-F0/Rap1b interaction. To explore the effect of force on the binding affinity and the dynamics mechanisms of talin-F0/Rap1b, molecular dynamics simulation was used to observe and compare the changes in functional and conformational information of the complex under different forces. Our results showed that when the complex was subjected to tensile forces, there were at least two dissociation pathways with significantly different mechanical strengths. The key event determining the mechanical strength difference between the two pathways was whether the β4 sheet of the F0 domain was pulled away from the original β1-β4 parallel structure. As the force increased, the talin-F0/Rap1b interaction first strengthened and then weakened, exhibiting the signature of a transition from catch bonds to slip bonds. The mechanical load of 20 pN increased the interaction index of two residue pairs, ASP54-ARG41 and GLN18-THR65, which resulted in a significant increase in the affinity of the complex. This study predicts the regulatory mechanism of the talin-F0/Rap1b interaction by forces in the intracellular environment and provides novel ideas for the treatment of related diseases and drug development.