west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "种子细胞" 30 results
  • PROTECTION EFFECTS OF BONE MARROW MESENCHYMAL STEM CELLS PARACRINE ON CHONDROCYTES INJURED BY INTERLEUKIN 1β

    ObjectiveTo study the potential protective effects of bone marrow mesenchymal stem cells (BMSCs) on chondrocytes injured by interleukin 1β (IL-1β), and the resistant capacity of chondrocytes when co-cultured indirectly with BMSCs against IL-1β. MethodsSix Sprague Dawley (SD) rats were randomly divided into experimental group (articular cartilage defects) and control group. The content and gene expression of IL-1β were detected at 6 hours after surgical intervention by quantitative real time RCR (qRT-PCR) and ELISA. BMSCs repairing function test: the 18-holes cultured chondrocytes were randomly divided into 3 groups (n=6): cells of blank group were not treated;cells of injured group and co-cultured group were intervened by IL-1β, and Transwell chamber was used to establish co-culture system of BMSCs with chondrocyte in co-cultured group. The mRNA relative expressions of cysteinyl aspartate specific proteinase 3 (Caspase 3), a disintegrin and metalloprotease with Thrombospondin motifs 4 (ADAMTS-4), and ADAMTS-5 were measured via qRT-PCR in chondrocytes, meanwhile Caspase-3 content was detected via ELISA, and the cell apoptosis rate was detected via flow cytometry. BMSCs protecting function test: the 12-holes cultured chondrocytes were randomly divided into 2 groups (n=6), Transwell chamber was used to establish co-culture system of BMSCs with chondrocyte in co-cultured group before the 2 groups were both intervened by IL-1β, then the same detected indexes were taken as the BMSCs repairing function test. ResultsAnimal in vivo studies showed that relative expression of IL-1β mRNA and IL-1β contents were significantly higher in experimental group than control group (P<0.05). BMSCs repair tests showed that mRNA relative expressions of Caspase-3, ADAMTS-4, and ADAMTS-5, Caspase-3 content, and cell apoptosis rate were significantly higher in injured group and co-cultured group than blank group, and in injured group than co-cultured group (P<0.05). BMSCs protect tests showed that mRNA relative expressions of Caspase-3, ADAMTS-4, and ADAMTS-5, Caspase-3 content, and cell apoptosis rate in co-cultured group were significantly lower than those in control group (P<0.05). ConclusionBMSCs, as seed cells for tissue engineering, have potential for applications to anti-inflammation and anti-apoptosis.

    Release date: Export PDF Favorites Scan
  • CONSTRUCTION OF TISSUE ENGINEERED COMPOSITE WITH THERMOSENSITIVE COLLAGEN HYDROGEL IN DYNAMIC CULTURE SYSTEM

    ObjectiveTo explore the morphological and functional features of tissue engineered composite constructed with bone mesenchymal stem cells (BMSCs) as seeding cells, thermosensitive collagen hydrogel (TCH) and poly-L-lactic acid (PLLA) as the extracellular matrix (ECM) scaffolds in the dynamic culture system. MethodsBMSCs were separated from long bones of Fischer344 rat, and cultured; and BMSCs at the 3rd generation were seeded on the ECM scaffold constructed with braided PLLA fiber and TCH. The BMSCs-ECM scaffold composite was cultured in the dynamic culture system which was designed by using an oscillating device at a frequency of 0.5 Hz and at swing angle of 70° (experimental group), and in the static culture system (control group) for 7 days. The general observation and scanning electron microscopy (SEM) observation were performed; total DNA content was measured at 0, 1, 3, and 7 days. ResultsPLLA was surrounded by collagen to form translucent gelatiniform in 2 groups; and compact membrane developed on the surface of PLLA. SEM observation showed that BMSCs had high viability and were fusiform in shape with microvilli on the surface of cells, and arranged in line; collagen and cells filled in the pores of PLLA fiber in the experimental group. The cells displayed a flat shape on the surface; there were less cells filling in the pores of PLLA fiber in the control group. At 1, 3, and 7 days, total DNA content in the experimental group was significantly higher than that in control group (P < 0.05). The total DNA content were increased gradually with time in 2 groups, showing significant difference between at 0 day and at 7 days (P < 0.05). ConclusionThe ECM constructed with TCH and PLLA has good biocompatibility. The dynamic cultivation system can promote the cell proliferation, distribution, and alignment on the surface of the composite, so it can be used for tissue engineered composite in vitro.

    Release date: Export PDF Favorites Scan
  • PROGRESS IN THE STUDY OF ARTICULAR CARTILAGE TISSUE ENGINEERING SEEDING CELLS

    Objective To review the latest progress of seeding cells for articular cartilage tissue engineering. Methods The recent original l iteratures on seeding cells for articular cartilage tissue engineering were extensively reviewed. Results The chondrocytes derived from BMSCs’ differentiation would be a main source of seeding cells articular cartilage for tissue engineering. Three-dimensional scaffolds and cultivation surroundings played important roles in the field of articular cartilage tissue engineering. Conclusion The util ization of cytokine and transgenic technology as well as improvements of three-dimensional scaffolds and cultivation surroundings will promote the development of articular cartilage tissue engineering.

    Release date:2016-09-01 09:19 Export PDF Favorites Scan
  • PRELIMINARY OBSERVATION OF BIOLOGICAL CHARACTERS OF CHONDROCYTES IN ARTICULAR LOOSE BODY

    Objective To observe the biological characters of chondrocytes in articular loose body and to find out seeding cells for cartilage tissue engineering. Methods Samples from 5 loose body cartilages, 2 normal articular cartilages and 6 osteoarthritis articular cartilages were collected. Part of each sample’s cartilage was histologically studied to observe the chondrocytes distribution the morphologic changes by toluidine-blue staining, chondrocytes’ apoptosis by terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL). The rest of each cartilage was digested and isolated by 0.25% trypsin and 0.2% collagenase Ⅱ, and then were cultivated in 10%DMEM. Their morphologic changes were observed 24h later.Comparison was made btween three cartilages. Results Compared with normal cartilage and osteoarthritis articular cartilage, the cells density was higher, their lacunars were larger, cells distribution was irregular, and apoptosis was more apparent in loose body cartilage. Conclusion The characters of chondrocytes from loose body is more like fibroblasts so they can not serve as seeding cells directly for cartilage tissue engineering.

    Release date:2016-09-01 09:30 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF TISSUE ENGINEERING TECHNIQUE IN ESOPHAGEAL DEFECT REPAIR AND RECONSTRUCTION

    ObjectiveTo review the research progress of the tissue engineering technique in the esophageal defect repair and reconstruction. MethodsThe recently published clinical and experimental literature at home and abroad on the scaffold materials and the seeding cells used in the tissue engineered esophageal reconstruction was consulted and summarized. ResultsA large number of basic researches and clinical applications show that the effect of the tissue engineered esophagus is close to the autologous structure and function of the esophagus and it could be used for the repair of the esophageal defect. However, those techniques have a long distance from the clinical application and need an acknowledged rule of technology. ConclusionTissue engineering technique could provide an innovative theory for the esophageal defect reconstruction, but its clinical application need further research.

    Release date: Export PDF Favorites Scan
  • Engineered Heart Tissues——How Long to Go from Bench to Clinic

    The engineered heart tissues (EHTs) present a promising alternative to current materials for native myocardial tissue due to the unique characteristics. However, until now, the clinical application of EHTs is limited by a serial of practical problems yet. Generally, the challenges need to further optimize include biomaterials, cell sources, and strategies of revascularization or establishment of EHTs. This review focuses on the newly progress on these aspects to encourage the emergence of novel EHTs that can meet clinic requirement properly.

    Release date: Export PDF Favorites Scan
  • STEM CELLS:IDEAL SEED CELLS FOR RECONSTRUCTION OF TISSUES AND ORGANS

    Objective To investigate an important role of the stem cells in reconstructing the tissues and organs. Methods Based on our own researches and combined with the review of the literature at home andabroad, the latest development of the cell therapy with the stem cells and the application of the seed cells in the tissue engineering were analyzed. Results As the stem cells are the origin of the human tissues and organs and have a higher self-renewal ability and extensive characteristics of proliferation in vitro, their imbedding and multi-differential potentialities were illustrated. Both the embryonic stem cells and the adult stem cells had a wide prospect as ideal seed cells for reparation and reconstruction of the impaired human tissues and organs. Conclusion The stem cells can play animportant role in repairing and reconstructing the injured tissues and organs and they have a promising prospect in clinical application. The further research and wide application of the stems cells will significantly improve the therapeutic effects on the injured tissues and organs.

    Release date:2016-09-01 09:25 Export PDF Favorites Scan
  • RESEARCH PROGRESS IN TISSUE ENGINEERED MENISCUS

    Objective To elucidate the latest research progress and application of tissue engineered meniscus. Methods The literature concerning the advance in tissue engineered meniscus was extensively reviewed, then closely-related issues including seed cells, scaffolds, and bioreactors were analyzed. Results With more and more attention being paid to meniscus tissue engineering, different approaches and strategies for seed cells, scaffolds, and bioreactors have contributed to the generation of meniscal constructs, which are capable of restoring meniscal lesions to some extent, but translating successes in basic science research to clinical application is still limited. Conclusion More research for the optimal combination of the appropriate cell source, the scaffold type, and the proper physical and chemical factors for the stimulation of cells differentiation into tissue with optimal phenotypes in tissue engineered meniscus is still in needed, but the overall future looks promising.

    Release date:2016-08-31 04:05 Export PDF Favorites Scan
  • Research Progress in Seeding Cells of Peripheral Nerve

    Seeding cells play an important role in the peripheral nerve damage repair. Seeding cells studied consequently in peripheral nerve are Schwann cells, bone marrow mesenchymal stem cells and neural stem cells. Schwann cells, the first seeding cells, are various unique glial cells in the peripheral nervous system, which can form the myelin sheath for insulation and package of the neuron projecting axons in the peripheral nervous system so that the conduction velocity of the nerve signal was accelerated. It can be proved that Schwann cells played an important role in the maintenance of peripheral nerve function and in the regeneration process after peripheral nerve injury. The second, bone marrow mesenchymal stem cells are the various mesenchymal stem cells mainly exist in the systemic connective tissues and organs. These functional stem cells are often studied at present, and it has been found that they have exuberant proliferation and differentiation potentials. Neural stem cells, mentioned the third in sequence, are the kind of pluripotent cells with multi-directional differentiation, which could conduct the self-renewal function, and generate and differentiate neurons, astrocytes and oligodendrocytes through asymmetric cell division. These three types of seed cells are discussed in this paper.

    Release date: Export PDF Favorites Scan
  • ADVANCE ON SEED CELLS OF TISSUE ENGINEERING CARTILAGE

    Objective To sum up the research advances of the seed cell and the culture system using in tissue engineering cartilage. Methods The recent original articles about the seed cell and the culture system in tissue engineering cartilage were extensively reviewed. Results At present, autologous or homologous cells is still major seed cell and the three dimensional culture system is also major system for tissue engineering cartilage. Conclusion The source of seed cell for tissue engineering cartilage. Conclusion The source of seed cell for tissue engineering cartilage should be further explored, and the culture system need to be improved and developed.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content