Precision medicine is a personalized medical system based on patients' individual biological information, clinical symptoms and signs, forming a new clinical research model and medical practice path. The basic idea of traditional Chinese medicine and the concept of precision medicine share many similarities. The basket trial developed for precision medicine is also suitable for clinical trials and evaluation of the efficacy of traditional Chinese medicine syndrome differentiation and treatment systems. Basket trials are used to evaluate the efficacy of a drug in the treatment of multiple diseases or disease subtypes. It has the advantages of sharing a master protocol, unifying management of subsidiary studies, simplifying the test implementation process, unifying statistical analysis, saving resources, reducing budgets and accelerating the drug evaluation progress. This is similar to the concept of using the "same treatment for different diseases" found in traditional Chinese medicine. This paper introduced the concept and method of basket trials and explored their application and advantages in clinical research into traditional Chinese medicine. This study is expected to provide references for the methodological innovation of clinical research into traditional Chinese medicine.
Basing on development of medical model, new national diagnostic standard is interpreted according to three aspects: classification, diagnostic standard, and diagnostic contents. Tracheobronchial tuberculosis and tuberculous pleurisy are added into the classification. The value of molecular and pathological techniques for diagnosis of the pulmonary tuberculosis is emphasized. The status of drug-resistance is included in the diagnostic content. Two opinions are suggested: some practical methods such as diagnostic chemotherapy are indicated in some grassroots areas, while new molecular techniques for detection of DNA/RNA of mycobacteria and resistant mutation are encouraged in some suitable institutions.
Abstract Precision medicine is an ideal medical paradigm which combines modern scientific methods with traditional medical methods to diagnose, treat and evaluate the physical function and nature of diseases more precisely, and to maximize health benefits and minimize the risk of individuals and society with the most effective, safest, and the most economical medical service. Evidence-based medicine is necessary to verify the precision of diagnosis and treatment. In this review, we clarified the conception of precision medicine and the relation between precision medicine and evidence-based medicine. Moreover, we reviewed the application of precision medicine in the field of cerebrovascular disease. We pointed out that such new technologies as genetics, bioinformatics, molecular imaging and management provided tools to realize the idea of precision medicine, and high-quality evidence-based studies provided a guarantee for the clinical practice of precision medicine. In summary, precision medicine is an individualized medical mode that based on the context of a patient's genetic information, living environment and clinical data, etc. to provide precise treatment strategies for the prevention and treatment of disease, but still the promotion of precision medicine should be based on clinical validation under the guidance of evidence-based medicine. Thus, long-term exploration and unremitting efforts are required to achieve the idea of precision medicine.
The umbrella trial has received increasing attention in the design of clinical trials for oncology drugs in recent years. This trial design categorizes a single disease into multiple sub-types based on predictive biomarkers or other predictive factors, and simultaneously evaluates the efficacy of multiple targeted therapies. When compared with the traditional drug development model of phase Ⅰ, phaseⅡ, and phase Ⅲ randomized controlled trials, umbrella trials are a more scientifically rigorous trial design that can speed up drug evaluation to address the conflict between numerous untested drugs and diseases with a lack of effective treatment options. This article will focus on the concept, main characteristics, eligibility criteria, design and statistical considerations, ethical considerations, and future directions of umbrella trials, with the aim of providing methodological guidance for the design of clinical trials for oncology drugs.
As one of the most breakthrough cutting-edge technologies in the biomedical field in recent years, organoid culture technology can use cells derived from, either (pluripotent) stem cells or tissue-derived differentiated/progenitor cells (foetal, neonatal, or adult) to form 3D multicellular structure organoids with self-organizing and recapitulating at least some features of the organ including tissue architecture or function abilities. Recently, organoids have been widely used in disease model construction, anti-cancer drug screening, gene or cell therapy, etc., providing an ideal model for basic biomedical research, drug development and clinical precision medicine, and has shown an important role in regenerative medicine.
ObjectivesTo initially construct a scientific, reasonable and precision medicine technology value judgment framework suitable for China’s national conditions based on expert consultation method, so as to provide scientific value judgment system support for China's medical insurance decision-making.MethodsThe preliminary evaluation indicator system for precision medicine technology value was established by using literature analysis and expert consultation method, and the direct weighting method was used to determine the indicators weight.ResultsAfter two rounds of expert consultation, an indicator system suitable for the value judgment of precision medicine technology in China was constructed, including 5 primary indicators (health needs, health effects, economics, innovation and suitability) and 14 secondary indicators. Each indicator was weighted according to importance.ConclusionsA set of precision medicine value judgment indicator system suitable for China has been initially established, which lays a certain foundation for further measurement research of the indicator system and provides a scientific basis for medical insurance decision-making.
Liddle syndrome and Gordon syndrome are two rare single-gene inherited hypertension diseases. In patients≤40 years, the prevalence of Liddle syndrome is about 1% and Gordon syndrome is uncertain all over the word, for which is often misdiagnosed and mistreated. The therapies of those diseases are targeted at gene mutation sites, as well as combined with modified lifestyle, and can achieve satisfactory diseases control. This paper reports a patient who is diagnosed with Liddle syndrome and Gordon syndrome at the same time. We aimed to consolidate and improve the diagnosis and accurate treatment of those two diseases by sharing, studying and discussing together with clinical doctors.
In order to promote the responsible development of precision medicine in China, the current situation of precision medicine in three major fields (clinical, research and commercial) was briefly introduced, and key ethical issues or disputes in each field (including informed consent, return of incidental findings, and allocation of medical resources in the clinical field; informed consent, return of research results, and data use and sharing in the research field; genetic counseling, clinical utility of genetic testing, and use of data in the field of direct-to-consumer genetic testing) were discussed. It is necessary to actively meet these ethical challenges for the development of precision medicine in China.