Objective Isoflurane has an acute preconditioning effectiveness against ischemia in kidney, but this beneficial effectiveness can only last for 2-3 hours. To investigate whether isoflurane produces delayed preconditioningagainst renal ischemia/reperfusion (I/R) injury, and whether this process is mediated by hypoxia inducible factor 1α(HIF- 1α). Methods A total of 52 male C57BL/6 mice were randomly assigned to 4 groups (n=13 in each group): the controlgroup (group A), PBS/isoflurane treated group (group B), scrambled small interference RNA (siRNA)/isoflurane treated group (group C), and HIF-1α siRNA/isoflurane treated group (group D). In groups C and D, 1 mL RNase-free PBS containing 50 μg scrambled siRNA or HIF-1α siRNA was administered via tail vein 24 hours before gas exposure, respectively. Equivalent RNasefree PBS was given in groups A and B. Then the mice in groups B, C, and D were exposed to 1.5% isoflurne and 25%O2 for 2 hours; while the mice in group A received 25%O2 for 2 hours. After 24 hours, 5 mice in each group were sacrificed to assesse the expressions of HIF-1α and erythropoietin (EPO) in renal cortex by Western blot. Renal I/R injury was induced with bilateral renal pedicle occlusion for 25 minutes followed by 24 hours reperfusion on the other 8 mice. At the end of reperfusion, the serum creatinine (SCr), the blood urea nitrogen (BUN), and the histological grading were measured. Results The expressions of HIF-1α and EPO in groups B and C were significantly higher than those in group A (P lt; 0.01). The concentrations of SCr and BUN in groups B and C were significantly lower than those in group A, as well as the scores of tubules (P lt; 0.01), and the injury of kidney was amel iorated noticeably in groups B and C. The expressions of HIF-1α and the concentrations of SCr and BUN in group D were significantly lower than those in group A (P lt; 0.01). Compared with groups B and C, the expression of HIF- 1α and EPO in group D decreased markedly (P lt; 0.01), the concentrations of SCr and BUN were increased obviously, as well asthe scores of tubules (P lt; 0.01), and the renal injury was aggratived significantly. Conclusion Isoflurane produces delayed preconditioning against renal I/R injury, and this beneficial effectiveness may be mediated by HIF-1α.
Objective Ginsenoside Rg1 could increase the tolerance of neural hypoxia and ischemia under stress, and play an anti-apoptotic effect in hypoxia ischemia brain damage (HIBD). To investigate the effects of ginsenoside Rg1 on neural apoptosis and recovery of neurological function in neonatal rats with HIBD, and to explore the possible mechanism. Methods Fifty-four 10-day-old SD rats (weighing 16-22 g) were randomly allocated into sham-operation group (Sham group, n=6), HIBD model group (HIBD group, n=24), and ginsenoside Rg1 treatment group (Rg1 group, n=24). SDrats in HIBD group and Rg1 group were made the models of HIBD by l igation of the right common carotid artery (CCA) and subsequently hypoxic ventilation (8%O2 plus 92%N2) for 2.5 hours; and in Sham group, the right CCA was only exposed without l igation of CCA and hypoxic ventilation. Intraperitoneal injection of 0.1 mL normal sal ine (NS) containing 40 mg/kg Rg1 was given immediately after operation in Rg1 group, intraperitoneal injection of 0.1 mL pure NS was given in both HIBD group and Sham group and was repeated every 24 hours. The general state of SD rats was monitored after operation, and Longa scores were recorded to evaluate the neurological function at 4, 8, 24, and 72 hours after HIBD. Western blot and immunohistochemistry staining were used to detect protein expressions of both hypoxia inducible factor 1α (HIF-1α) and cleaved caspase 3 (CC3). TUNEL staining was used to evaluate neural apoptosis in situ. Results All rats survived to the end of the experiment. Neurological dysfunction was observed in both HIBD group and Rg1 group, showing significant difference in Longa score when compared with that in Sham group (P lt; 0.05). There was significant difference in Longa score between Rg1 group and HIBD group at 72 hours after HIBD (P lt; 0.05). Western blot showed that the protein expressions of both HIF-1α and CC3 were observed at every time point in every group. The expressions of HIF-1α protein in HIBD group and Rg1 group were significantly higher than those in Sham group at 4, 8, 24, and 72 hours (P lt; 0.05), and the expressions in Rg1 group were significantly higher than those in HIBD group (P lt; 0.05). The expressions of CC3 protein in HIBD group were significantly higher than those in Sham group at 4, 8, 24, and 72 hours (P lt; 0.05), and significant difference was found between Rg1 group and Sham group only at 4 hours (P lt; 0.05). Immunohistochemistry staining demonstrated that HIF-1α and CC3 protein mainly distributed in nucleusand cytoplasma, the results of HIF-1α and CC3 protein expression were similar to the results by Western blot. TUNEL staining showed that the positive cells were characterized by yellow or brown particle confined within nucleus. The number of apoptotic cells at every time point in HIBD group was significantly higher when compared with that in Sham group (P lt; 0.05), and the number of apoptotic cells in Rg1 group was significantly lower when compared with that in HIBD group at 8, 24, and 72 hours (P lt; 0.05). Conclusion Rg1 could inhibit Caspase 3 activation by strengthening and stabil izing HIF-1α signal pathway, and plays a role of anti-apoptosis in neonatal rats with HIBD.
Objective To explore the change tendency of hypoxia-inducible factor-1α (HIF-1α) and extracellular signal-regulated kinase 1/2 (ERK1/2) in fetal rat cerebral cortex neurons cultured in vitro after hypoxia-ischemia reperfusion andto investigate their mutual relationship. Methods Cortical neurons obtained from cerebral cortex of 15 pregnant SD rats at16-18 days of gestation underwent primary culture. The primary neurons 5 days after culture were adopted to establ ish model of oxygen and glucose deprivation (OGD). The experiment was divided into 4 groups: the experimental group 1, culture medium was changed to neuron complete medium containing glucose after the preparation of OGD model to form reperfusion, and the neurons were observed 0, 2, 4, 8, 12 and 24 hours after reperfusion; the control group 1, the neurons were treated with normal medium; the experimental group 2, the neurons were pretreated with U0126 followed by the preparation of OGD model, and the neurons were observed 4 and 8 hours after reperfusion; the control group 2, the neurons were pretreated with DMSO, and other treatments were the same as the experimental group 2. Expressions of HIF-1α, VEGF protein, ERK1/2 and p-ERK1/2 were detected by Western blot. Expression and distribution of p-ERK1/2 and HIF-1α protein were detected by SABC immunocytochemistry method. Results Compl icated synaptic connections between cortical neurons processes were observed 5 days after culture. The expression of HIF-1α and VEGF were increased gradually, peaked at 8 hours, and decreased gradually after 12 hours in the experimental group 1, and there were significant differences between the experimental group 1 and the control group 1 (P lt; 0.05). There was no significant difference between the experimental group 1 and the control group 1 in terms of ERK1/2 protein expression (P gt; 0.05). The p-ERK1/2 protein expression in the experimental group 1 started to increase at 2 hours peaked at 4 hours, and started to decrease at 8 hours, showing significant differences compared with the control group 1 (P lt; 0.01). In the experimental group 2, the p-ERK1/2 protein decreased, and HIF-1αand VEGF protein expression subsequentlydecreased, showing significant differences compared with the control group 2 (P lt; 0.05). There was no significant difference between the experimental group 2 and the control group 2 in terms of ERK1/2 protein expression at each time point (P gt; 0.05). Immunocytochemistry staining showed that p-ERK1/2 and HIF-1α expression decreased, and the yellow-brown staining of the neurons was reduced. Conclusion Expressions of HIF-1α and its target-gene VEGF protein in the cortex neurons after OGD reperfusion are time-dependent. Their expressions decrease when ERK1/2 signal ing pathway is inhibited, indicating the pathway plays an important role in the regulation of HIF-1α and VEGF induced by OGD of cortical neurons
目的 通过复制人肝癌细胞株HepG2裸鼠皮下移植瘤模型,观察绿茶提取物表没食子儿茶素没食子酸酯(EGCG)干预对HepG2移植瘤新生血管生成的影响。 方法 瘤体接种复制HepG2移植瘤模型,荷瘤裸鼠20只随机分组,实验组给予EGCG溶液每日20 mg/(kg·只),腹腔注射3周,对照组给予等量灭菌注射用水3周,末次用药24 h,后处死裸鼠,剥离移植瘤。常规病理切片观察移植瘤组织结构;逆转录-聚合酶链式反应和免疫组织化学法检测移植瘤缺氧诱导因子-1α(HIF-1α)、血管内皮生长因子(VEGF)mRNA及蛋白表达,并通过检测CD34表达计数瘤组织微血管密度(MVD)。 结果 组织病理学观察实验组移植瘤见大量坏死区,瘤体内血管数量明显少于对照组;实验组HIF-1α、VEGF mRNA及蛋白表达水平比对照组均明显下调(P<0.05),实验组MVD比对照组明显下降(P<0.05)。 结论 EGCG可抑制荷瘤裸鼠HepG2移植瘤新生血管生成。
Objective To investigate the expression of hypoxia inducible factor 1(HIF1alpha;) in ratsprime; retinae during the embryonic and earlier postnatal period. Methods The retinal expression patterns of HIF-1alpha; protein and mRNA of embryonic day 12 (E12), E16, E20, and postnatal day 1(P1) and P5 rats were determined by immunohistochemical staining and reverse transcriptionpolymerase chain reaction (RT-PCR). Results HIF-1alpha; protein was detected in the neural epithelial layer and the pigment epithelial layer at all those 5 timepoints, with higher expression in the ganglion cell layer and the inner plexiform layer, and seems limited to the ganglion cell layer when re tina became more mature. Embryonic rat retina had higher expression of HIF-1alpha; protein and mRNA than postnatal retina, the difference was significant (P<0.01). Conclusion The expression of HIF1alpha; in ratsprime;retina e differs from embryonic to earlier postnatal stages.
Objective To observe the influence of the expression of CD18 on the neutrophile and the leukocyte adhesion to retinal vascular endothelium by hypoxia-inducible factor-1 alpha (HIF-1alpha;) in early diabetic retinopathy rats. Methods Male Sprague-Dawley rats received intraperitoneal injection of streptozotocin to induce diabetes model. 18 diabetic rats were divided into 3 groups randomly after 2 months of diabetes induction, including diabetic group (group B), HIF-1alpha; anti-sense oligonucleotides (ASODN) injection group (group C) and HIF-1alpha; sense oligonucleotides (SODN) injection group (group D), the age and weigh matched health rats were chosen as control group (group A), with 6 rats in each group. Then group A and B rats received 5% glucose solution caudalis veins injection, group C and group D rats received HIF-1alpha; ASODN and HIF-1alpha; SODN caudalis veins injection, respectively(025 mg/kg).The level of CD18 on the neutrophil isolated from the peripheral blood was measured by flow cytometry. Retinal leukostasis was quantified with acridine orange leukocyte fluorography. Results The percentage of CD18 positive neutrophil cell was(44.93plusmn;3.60)% in group B,(18.66plusmn;1.52)% in group A,(31.66plusmn;4.72)% in group C,(51.00plusmn;5.66)% in group D. Compared with each other groups,the differences are statistically significant (F=42.46, Plt;0.001). The number of positive staining cells of retinal leukocyte was (46.16plusmn;10.68)in group A,(133.83plusmn;20.43)in group B,(99.83plusmn;9.28)in group C,(121.33plusmn;10.23) in group C. Compared group B with group C,the number of positive staining cells raised about 2.89 times;compared group B with group C and D,the differences are statistically significant (P=0.12,95% confidence interval -3.69~28.69). Conclusions In vivo, HIF-1alpha; can decreased the expression of CD18 on neutrophils from diabetic ratsprime; peripheral blood and the collection of retinal leukostasis in the diabetic animals. HIF-1alpha; may serve as a therapeutic target for the treatment and/or prevention of early diabetic retinopathy. (Chin J Ocul Fundus Dis,2008,24:268-271)
ObjectiveTo explore the involvement of miR-126 and the role of mammalian target of rapamycin (mTOR)/hypoxia-induced factor 1 α (HIF-1 α) pathway in regulating human umbilical cord mesenchymal stem cells (hUCMSCs) exosomes (Exo) on vascular endothelial growth factor (VEGF)-A levels in high glucose-induced human retinal vascular endothelial cells (HRECs). MethodsThe hREC was cultured in EGM-2-MV endothelial cell culture medium with 30 mmol/L glucose and placed in hypoxic cell incubator by 1% oxygen concentration. The cell model of high glucose and low oxygen was established. After modeling, divided HRECs into Exo group, phosphate buffer saline (PBS) group, PBS+anti-miR126 group, Exo+anti-miR126 group, PBS+anti-mTOR group, and PBS+anti-HIF-1 α group. High-glucose and hypoxia-induced hREC in the PBS and Exo groups were respectively co-cultured with PBS and 100 μg/ml hUCMSC Exo. PBS+anti-mTOR group, PBS+anti-HIF-1 α group: 500 nmol/L mTOR inhibitor ADZ2014, 25 μmol/L HIF-1 α inhibitor YC-1 pretreatment for hREC 12 h, and then co-culture with PBS after High-glucose and hypoxia-induced. PBS+anti-miR126 group, Exo+anti-miR126 group: miR-126 LNA power inhibitor probe was transfected with high glucose, and co-cultured with PBS and hUCMSC Exo 6 h after transfection. Real-time polymerase chain reaction (qPCR) measured miRNA-126 expression levels in PBS, and Exo groups for 0, 8, 16 and 24 h. After 24 hof co-culture, the levels of mTOR and HIF-1 α in the cells of PBS and Exo groups were detected by immunofluorescence, Western blot and qPCR, respectively. Western blot, qPCR detection of VEGF-A expression levels in cells of the PBS+anti-mTOR and PBS+anti-HIF-1 α groups. The expression of VE GF-A, mTOR, and HIF-1 α mRNA was measured in cells of PBS+anti-miR126 group and Exo+anti-miR126 group by qPCR. Comparison between two groups was performed by t-test; one-way ANOVA was used for comparison between multiple groups. ResultsAt 0, 8, 16 and 24 h, the relative mRNA expression of miR-126 gradually increased in the Exo group (F=95.900, P<0.05). Compared with the PBS group, The mTOR, HIF-1 α protein (t=3.466, 6.804), mRNA in HRECs in the Exo group, VEGF-A mRNA expression (t=8.642, 7.897, 6.099) were all downregulated, the difference was statistically significant (P<0.05). The relative expression level of VEGF-Aprotein (t=3.337, 7.380) and mRNA (t=8.515, 10.400) was decreased in HRECs of the anti-mTOR+PBS group and anti-HIF-1 α+PBS group, differences were statistically significant (P<0.05). The relative expression of VEGF-A, mTOR, and HIF-1 α mRNA was significantly increased in the cells of the Exo+anti-miR126 group, the differences were all statistically significant (t=4.664, 6.136, 6.247; P<0.05). ConclusionsmiR-126 plays a role in regulating the effect of hUCMSCs exosomes on VEGF-A levels in high glucose-induced HRECs via mTOR-HIF-1 α pathway.
ObjectiveTo observe the effect of conditional knocking out (KO) vascular endothelial growth factor (VEGF) gene on the mouse model of oxygen induced retinopathy (OIR).MethodsThe conditional VEGF KO mice were generated using Cre-Loxp technology, resulting in the deletion of VEGF in a portion of Müller cells permanently in mouse retina. Cre positive was CKO mice, Cre negative was NKO mice. OIR was induced by keeping mice in 75% oxygen at postnatal 7 days (P7) to P12 and in room air from P12 to P17 (each 20 mice for CKO and NKO, respectively). The mice mortality was analyzed. At day P17, the percentage of retinal avascular area was calculated using retinal flat-mounting with fluorescence angiography, the number of vascular endothelial cell nucleus breaking through retinal inner limiting membrane was counted with hematoxylin eosin (HE) staining of retinal sections, and the expression of hypoxia-inducible factor-1α (HIF-1α) was detected by immunofluorescence analysis. ResultsDuring the development of OIR, the mortality rate of CKO mice (65.00%) was higher than that of NKO mice (30.00%) with the significant difference (x2=4.912, P=0.027). At day P17, all the mice retinas were harvested. The retinal fluorescence angiography displayed that the normal retinal vascularization of CKO mice was delayed, and large avascular areas were observed. Meanwhile, rare new vascular plexus was found in CKO mice and the thickness of whole retina decreased dramatically. In contrast, NKO mice developed larger area of normal retinal vascular network structure with higher blood vessel density and more new vascular plexus with obvious fluorescein leakage. The percentage of avascular area in CKO mice [(28.31±11.15)%] was higher than NKO mice [(16.82±7.23)%] with the significant difference (t=2.734, P=0.014). The HE staining of retinal sections indicated smaller counts of vascular endothelial cell nucleus breaking through retinal inner limiting membrane in CKO mice (26.10±6.37) when compared to NKO mice (28.80±7.59) , the difference was significant (t=2.437, P=0.016). The immunofluorescence analysis showed stronger expression of HIF-1α in CKO mice than NKO mice, which was mainly located in the retinal ganglion cell layer.ConclusionsThe local VEGF gene knockout partially inhibits retinal neovascularization in OIR mice. However, it also suppresses the normal retinal blood vascular development with a decrease of OIR mice survival ability.