Abstract: Diseases prognosis is often influenced by multiple factors, and some intricate non-linear relationships exist among those factors. Artificial neural network (ANN), an artificial intelligence model, simulates the work mode of biological neurons and has a b capability to analyze multi-factor non-linear relationships. In recent years, ANN is increasingly applied in clinical medical fields, especially for the prediction of disease prognosis. This article focuses on the basic principles of ANN and its application in disease prognosis research.
Electrocardiogram (ECG) is a noninvasive, inexpensive, and convenient test for diagnosing cardiovascular diseases and assessing the risk of cardiovascular events. Although there are clear standardized operations and procedures for ECG examination, the interpretation of ECG by even trained physicians can be biased due to differences in diagnostic experience. In recent years, artificial intelligence has become a powerful tool to automatically analyze medical data by building deep neural network models, and has been widely used in the field of medical image diagnosis such as CT, MRI, ultrasound and ECG. This article mainly introduces the application progress of deep neural network models in ECG diagnosis and prediction of cardiovascular diseases, and discusses its limitations and application prospects.
The electroencephalogram (EEG) signal is a general reflection of the neurophysiological activity of the brain, which has the advantages of being safe, efficient, real-time and dynamic. With the development and advancement of machine learning research, automatic diagnosis of Alzheimer’s diseases based on deep learning is becoming a research hotspot. Started from feedforward neural networks, this paper compared and analysed the structural properties of neural network models such as recurrent neural networks, convolutional neural networks and deep belief networks and their performance in the diagnosis of Alzheimer’s disease. It also discussed the possible challenges and research trends of this research in the future, expecting to provide a valuable reference for the clinical application of neural networks in the EEG diagnosis of Alzheimer’s disease.
Objective To develop a deep learning system for CT images to assist in the diagnosis of thoracolumbar fractures and analyze the feasibility of its clinical application. Methods Collected from West China Hospital of Sichuan University from January 2019 to March 2020, a total of 1256 CT images of thoracolumbar fractures were annotated with a unified standard through the Imaging LabelImg system. All CT images were classified according to the AO Spine thoracolumbar spine injury classification. The deep learning system in diagnosing ABC fracture types was optimized using 1039 CT images for training and validation, of which 1004 were used as the training set and 35 as the validation set; the rest 217 CT images were used as the test set to compare the deep learning system with the clinician’s diagnosis. The deep learning system in subtyping A was optimized using 581 CT images for training and validation, of which 556 were used as the training set and 25 as the validation set; the rest 104 CT images were used as the test set to compare the deep learning system with the clinician’s diagnosis. Results The accuracy and Kappa coefficient of the deep learning system in diagnosing ABC fracture types were 89.4% and 0.849 (P<0.001), respectively. The accuracy and Kappa coefficient of subtyping A were 87.5% and 0.817 (P<0.001), respectively. Conclusions The classification accuracy of the deep learning system for thoracolumbar fractures is high. This approach can be used to assist in the intelligent diagnosis of CT images of thoracolumbar fractures and improve the current manual and complex diagnostic process.
The directed functional connectivity in cerebral cortical is the key to understanding the pattern of the behavioral tissue. This process was studied to explore the directed functional network of rifle shooters at cerebral cortical rhythms from electroencephalogram (EEG) data, aiming to provide neurosciences basis for the future development of accelerating rifle skill learning method. The generalized orthogonalized partial directed coherence (gOPDC) algorithm was used to calculate the effective directed functional connectivity of the experts and novices in the pre-shot period. The results showed that the frontal, frontal-central, central, parietal and occipital regions were activated. Moreover, the more directed functional connections numbers in right hemispheres were observed compared to the left hemispheres. Furthermore, as compared to experts, novices had more activated regions, the stronger strength of connections and the lower value of the global efficiency during the pre-shot period. Those indirectly supported the conclusion that the novices needed to recruit more brain resources to accomplish tasks, which was consistent with " neural efficiency” hypothesis of the functional cerebral cortical in experts.
Fetal electrocardiogram signal extraction is of great significance for perinatal fetal monitoring. In order to improve the prediction accuracy of fetal electrocardiogram signal, this paper proposes a fetal electrocardiogram signal extraction method (GA-LSTM) based on genetic algorithm (GA) optimization with long and short term memory (LSTM) network. Firstly, according to the characteristics of the mixed electrocardiogram signal of the maternal abdominal wall, the global search ability of the GA is used to optimize the number of hidden layer neurons, learning rate and training times of the LSTM network, and the optimal combination of parameters is calculated to make the network topology and the mother body match the characteristics of the mixed signals of the abdominal wall. Then, the LSTM network model is constructed using the optimal network parameters obtained by the GA, and the nonlinear transformation of the maternal chest electrocardiogram signals to the abdominal wall is estimated by the GA-LSTM network. Finally, using the non-linear transformation obtained from the maternal chest electrocardiogram signal and the GA-LSTM network model, the maternal electrocardiogram signal contained in the abdominal wall signal is estimated, and the estimated maternal electrocardiogram signal is subtracted from the mixed abdominal wall signal to obtain a pure fetal electrocardiogram signal. This article uses clinical electrocardiogram signals from two databases for experimental analysis. The final results show that compared with the traditional normalized minimum mean square error (NLMS), genetic algorithm-support vector machine method (GA-SVM) and LSTM network methods, the method proposed in this paper can extract a clearer fetal electrocardiogram signal, and its accuracy, sensitivity, accuracy and overall probability have been better improved. Therefore, the method could extract relatively pure fetal electrocardiogram signals, which has certain application value for perinatal fetal health monitoring.
To solve the safety problems caused by the restriction of interaction space and the singular configuration of rehabilitation robot in terminal traction upper limb rehabilitation training, a trajectory planning and tracking control scheme for rehabilitation training is proposed. The human-robot safe interaction space was obtained based on kinematics modeling and rehabilitation theory, and the training trajectory was planned based on the occupational therapy in rehabilitation medicine. The singular configuration of the rehabilitation robot in the interaction space was avoided by exponential adaptive damped least square method. Then, a nonlinear controller for the upper limb rehabilitation robot was designed based on the backstepping control method. Radial basis function neural network was used to approximate the robot model information online to achieve model-free control. The stability of the controller was proved by Lyapunov stability theory. Experimental results demonstrate the effectiveness and superiority of the proposed singular avoidance control scheme.
Temporal lobe epilepsy is the most common type of epilepsy in clinic. In recent years, many studies have found that patients with temporal lobe epilepsy have different degrees of influence in executive function related fields. This influence may not only exist in a certain field of executive function, but may be affected in several fields, and may be related to the origin site of seizures. However, up to now, there is no unified standard for the composition of executive function, and it is widely accepted that the three core components of executive function are working memory, inhibitory control and cognitive flexibility/switching. In addition, the International League Against Epilepsy proposed a new definition in 2010, and epilepsy is a brain network disease. There is a close relationship between brain neural network and cognitive impairment. According to the cognitive field, the brain neural network can be divided into six types: default mode network, salience network, executive control network, dorsal attention network, somatic motor network and visual network. In recent years, there has been increasing evidence that four related internal brain networks are series in a range of cognitive processes. The executive dysfunction of temporal lobe epilepsy may be related to the changes of functional connectivity of neural network, and may be related to the left uncinate fasciculus. This article reviews the research progress related to executive function in temporal lobe epilepsy from working memory, inhibitory control and cognitive flexibility, and discusses the correlation between the changes of temporal lobe epilepsy neural network and executive function research.
Image registration is of great clinical importance in computer aided diagnosis and surgical planning of liver diseases. Deep learning-based registration methods endow liver computed tomography (CT) image registration with characteristics of real-time and high accuracy. However, existing methods in registering images with large displacement and deformation are faced with the challenge of the texture information variation of the registered image, resulting in subsequent erroneous image processing and clinical diagnosis. To this end, a novel unsupervised registration method based on the texture filtering is proposed in this paper to realize liver CT image registration. Firstly, the texture filtering algorithm based on L0 gradient minimization eliminates the texture information of liver surface in CT images, so that the registration process can only refer to the spatial structure information of two images for registration, thus solving the problem of texture variation. Then, we adopt the cascaded network to register images with large displacement and large deformation, and progressively align the fixed image with the moving one in the spatial structure. In addition, a new registration metric, the histogram correlation coefficient, is proposed to measure the degree of texture variation after registration. Experimental results show that our proposed method achieves high registration accuracy, effectively solves the problem of texture variation in the cascaded network, and improves the registration performance in terms of spatial structure correspondence and anti-folding capability. Therefore, our method helps to improve the performance of medical image registration, and make the registration safely and reliably applied in the computer-aided diagnosis and surgical planning of liver diseases.
To enhance the accuracy of computer-aided diagnosis of adolescent depression based on electroencephalogram signals, this study collected signals of 32 female adolescents (16 depressed and 16 healthy, age: 16.3 ± 1.3) with eyes colsed for 4 min in a resting state. First, based on the phase synchronization between the signals, the phase-locked value (PLV) method was used to calculate brain functional connectivity in the θ and α frequency bands, respectively. Then based on the graph theory method, the network parameters, such as strength of the weighted network, average characteristic path length, and average clustering coefficient, were calculated separately (P < 0.05). Next, using the relationship between multiple thresholds and network parameters, the area under the curve (AUC) of each network parameter was extracted as new features (P < 0.05). Finally, support vector machine (SVM) was used to classify the two groups with the network parameters and their AUC as features. The study results show that with strength, average characteristic path length, and average clustering coefficient as features, the classification accuracy in the θ band is increased from 69% to 71%, 66% to 77%, and 50% to 68%, respectively. In the α band, the accuracy is increased from 72% to 79%, 69% to 82%, and 65% to 75%, respectively. And from overall view, when AUC of network parameters was used as a feature in the α band, the classification accuracy is improved compared to the network parameter feature. In the θ band, only the AUC of average clustering coefficient was applied to classification, and the accuracy is improved by 17.6%. The study proved that based on graph theory, the method of feature optimization of brain function network could provide some theoretical support for the computer-aided diagnosis of adolescent depression.