west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "羟基乙酸" 18 results
  • EXPERIMENTAL STUDY OF TISSUE ENGINEERED BLOOD VESSEL WITH VASCULAR ENDOTHELIAL CELL AND VASCULAR SMOOTH MUSCLE CELL

    OBJECTIVE: To investigate the feasibility to seed vascular endothelial cell(VEC) and vascular smooth muscle cell (VSMC) into tissue engineered blood vessel scaffold material. METHODS: 1. A blood vessel scaffold with a combined polymer was designed, which mainly is composed of rabbit VSMC and collagen with reinforcement by a non-spinning fabric mesh made of polyglycolic acid (PGA). 2. VEC were isolated from rabbit thoracic aorta by enzyme digestion methods and subcultured and purified. Then the cells were seeded into scaffold material. The morphological characteristics of tissue engineered blood vessel was analyzed by scanning electron microscopy. RESULTS: VEC could adhere well to the inner surface of the tissue engineered tubular scaffold material with a tenacity and elasticity. VSMC could sustain bioactivity of cell. CONCLUSION: Non-spinning PGA porous biodegradable materials coated with collagen is benefit for cells to adhere and grow. It will lay a foundation of a laminated structure of tissue engineered blood vessel.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • Effect of simulated microgravity mean on morphology and secretory function in cultured parathyroid cells of rat

    Objective To culture primary parathyroid cells by mean of simulated microgravity, observe their basic morphological characteristics, study survival rate and secretory function of parathyroid cells, and explore more excellent culture mean of parathyroid cells. Methods There were 37 male Wistar rats, the body weight was 150–200 g. The rat was intraperitoneally injected with 1% pentobarbital sodium (50 mg/kg). The parathyroid glands were surgically excised and identified pathologically. The parathyroid gland cells were got and digested them with collagenase Ⅱ, which were divided into three groups: conventional culture group (simple parathyroid cells were cultured), polyglycolic acid (PGA) scaffold culture group (the parathyroid cells were cultured on the PGA scaffold), and simulated microgravity culture group (the parathyroid cells and PGA scaffolds were cultured in simulated microgravity environment). The parathyroid cells were cultured for 1, 3, 5 or 7 days in different culture conditions, then the parathyroid hormone (PTH) was measured, morphological characteristics of the parathyroid cell was observed under phase contrast microscope, survival rate of the parathyroid cells was calculated by acridine orange/propidium iodide staining. Results The parathyroid cell morphologies of most cells were well and center of part of cell mass was necrosis on day 7 in the conventional culture group. The most parathyroid cells were spreading toward the poles along the PGA cell scaffold in the longitudinal direction and the adjacent stents were connected by extracellular matrix on day 7 in the PGA scaffold culture group. The parathyroid cells cultured under the simulated microgravity were got round and formed clusters on day 7 in the simulated microgravity culture group. Compared with the other two groups on day 7, the PTH and the survival rate of the parathyroid cells were significantly higher in the simulated microgravity culture group (P<0.05). Conclusions Parathyroid cells cultured in simulated microgravity environment could maintain better morphology, survival rate is higher, and secretory function is better. Therefore, parathyroid cells cultured in simulated microgravity could be used as good donor cell for treatment of hypoparathyroidism. PGA scaffold could be used as a good carrier for culture of parathyroid cell.

    Release date:2017-02-20 06:43 Export PDF Favorites Scan
  • Effect of bone morphogenetic protein 7/poly (lactide-co-glycolide) microspheres on the in vitro proliferation and chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells

    ObjectiveTo evaluate the effect of bone morphogenetic protein 7 (BMP-7)/poly (lactide-co-glycolide) (PLGA) microspheres on in vitro proliferation and chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells (BMSCs).MethodsBMP-7/PLGA microspheres were fabricated by double emulsion-drying in liquid method. After mixing BMP-7/PLGA microspheres with the chondrogenic differentiation medium, the supernatant was collected on the 1st, 3rd, 7th, 14th, and 21st day as the releasing solution. The BMSCs were isolated from the bilateral femurs and tibias of 3-5 days old New Zealand rabbits, and the 3rd generation BMSCs were divided into 2 groups: microspheres group and control group. The BMSCs in microspheres group were cultured by 200 μL BMP-7/PLGA microspheres releasing solution in the process of changing liquid every 2-3 days, while in control group were cultured by chondrogenic medium. The cell proliferation (by MTT assay) and the glycosaminoglycan (GAG) contents (by Alician blue staining) were detected after chondrogenic cultured for 1, 3, 7, 14, and 21 days. The chondrogenic differentiation of BMSCs was observed by safranine O staining, toluidine blue staining, and collagen type Ⅱ immunohistochemistry staining at 21 days.ResultsMTT test showed that BMSCs proliferated rapidly in 2 groups at 1, 3, and 7 days; after 7 days, the proliferation of BMSCs in the control group was slow and the BMSCs in microspheres group continued to proliferate rapidly. There was no significant difference of the absorbance (A) value at 1, 3, and 7 days between 2 groups (P>0.05), but theA value at 14 and 21 days in microspheres group was significantly higher than that in control group (P<0.05). Compared with control group at 21 days, in microsphere group, almost all nuclei were dyed bright red by safranine O staining, almost all the nuclei appeared metachromatic purple red by toluidine blue staining, and the most nuclei were yellow or brown by immunohistochemical staining of collagen type Ⅱ. Alcian blue staining showed that the content of GAG in 2 groups increased continuously at different time points; after 7 days, the increasing trend of the control group was slow and the microspheres group continued hypersecretion. There was no significant difference of the GAG content at 1, 3, and 7 days between 2 groups (P>0.05), but the GAG content at 14 and 21 days in microspheres group was significantly higher than that in control group (P<0.05).ConclusionBMP-7/PLGA microspheres prepared by double emulsion-drying in liquid method in vitro can promote proliferation and chondrogenic differentiation of rabbit BMSCs.

    Release date:2018-04-03 09:11 Export PDF Favorites Scan
  • AN EXPERIMENTAL STUDY ON ECTOPIC OSTEOGENESIS OF AUTOLOGOUS MICROMORSELIZED BONE COMPOUNDED WITH SLOW-RELEASED rhBMP-2/PLGA MICROSPHERE

    Objective To observe the release pattern of the microcysts and the effect of ectopic osteogenesis of combined micromorselized bone by optimized preparation of microcysts. Methods Optimized poly-DLlactide-co-glycolide (PLGA) microcysts manufacturing method was performed with the orthogonal design, and the accumulated release amount of microcysts was calculated at 2 h, 4 h, 8 h, 12 h, 24 h, 36 h, 48 h, 60 h, 72 h, 84 h, 96 h, 120 h, 144 h, 168 h, 192 h, 216 h, 240 h and 264 h. Twentyfour Wistar rats were divided into 4 groups (n=6) and 1 cm length incision was cut in their bilateral thighs skin, forming 48 gluteus maximus muscle sackmodels. In group A,collagen was implanted to bilateral muscle sacks respectively. In group B, collagen and autologous morselized bone were implanted to bilateral muscle sacks. Ingroup C, collagen and rhBMP-2/PLGA delayed release microcysts were implanted to bilateralmuscle sacks respectively. In group D, collagen and morselized bone/rhBMP-2/PLGA delayed release microcysts were implanted to bilateral muscle sacks. Gross and histologic observations were made at 3, 4 and 5 weeks postoperatively.Results Every optimized variance had an effect on particle diameter of microcyst and its encapsulating rate. The microcyst’s surface was smooth and had a fine spheroplast, which released slowly within 11 days in vitro. In thethird week postoperatively, the graft in group A could not be touched, while the graft in all other 3 groups was still found. After 3 weeks, collagen was absorbed completely in group A, the residual collagen could be seen in groups B, C andD. After 4 weeks, collagen could be seen in group A; micromorselized bone continued to be absorbed and became smaller in group B; microsphere became smaller, osteoblasts increased in group C; micromorselized bone and microsphere continuedto be absorbed, oteoblasts and chondroblasts increased. After 5 weeks, implantsbecame small, microsphere was absorbed, osteoblasts and chondroblasts became more in groups B, C and D. Microcysts presented with white granuloshape and were packaged in tissue pieces. Histologic observation showed that the PLGA microcysts in 3 weeks and 4 weeks could be absorbed gradually as the time in vivo, if combining with morselzed bone they could produce abundant induced osteoblasts and chondroblasts. Conclusion Optimizing the preparation technology of microcysts has delayed their release during a long period in vitro. Autologous micromorselized bone can be ectopicly induced to produce large amount of osteoblasts in gluteus maximus muscle sack, where PLGA microcysts can combine organically and bring about the bone formation with less amount of growth factors.

    Release date:2016-09-01 09:20 Export PDF Favorites Scan
  • IN VIVO DEGRADABLE PROPERTIES OF A NOVEL INJECTABLE CALCIUM PHOSPHATE CEMENT CONTAINING POLY LACTIC-CO-GLYCOLIC ACID

    Objective To investigate the in vivo degradable properties of new calcium phosphate cement (CPC) containing poly lactic-co-glycolic acid (PLGA) so as to lay a foundation for the future clinical application. Methods A novel CPC containing PLGA (CPC/PLGA) was prepared according to a ratio of 45% dicalcium phosphate anhydrous ∶ 45% partially crystallized calcium phosphates ∶ 10% PLGA. Thirty-two adult New Zealand rabbits (weighing 2.2-3.0 kg, male or female in half) were divided into the experimental group (n=17) and the control group (n=15). The bone defect models of the bilateral femoral condyles (4.5 mm in diameter and 1.5 cm in depth) were made by drilling hole. Defect at the right side was repaired with CPC/ PLGA in the experimental group and with CPC in the control group, while defect at the left side was not treated as blank control. The general condition of rabbits was observed after operation; the histological observation and bone histomorphometric analysis were performed at 2, 4, 8, 16, and 24 weeks; and scanning electronic microscope (SEM) observation was performed at 8 and 16 weeks after operation. Results All rabbits survived to the end of experiment. The histological observation showed: CPC/PLGA degraded gradually, and the new-born bone trabecula ingrew; bone trabeculae became rough and b; and CPC/PLGA almost biodegraded at 24 weeks in the experimental group. The CPC degradation was much slower in the control group than in the experimental group. The total bone tissue percentage was 44.9% ± 23.7% in the experimental group, and 25.7% ± 10.9% in the control group, showing significant difference between 2 groups (t=3.302, P=0.001); and the bone tissue percentage showed significant difference between 2 groups at 8, 16, and 24 weeks (P lt; 0.05). The results of SEM observation showed that the pore size was 100-300 μm at 8 weeks after operation, new-born bone trabecula grew into the pores and combined bly with residual cement in the experimental group. Conclusion Novel CPC/PLGA has good in vivo degradable properties, and it can be an ideal bone substitute in future clinical application.

    Release date:2016-08-31 04:24 Export PDF Favorites Scan
  • Experiment of porous calcium phosphate/bone matrix gelatin composite cement for repairing lumbar vertebral bone defect in rabbit

    Objective To investigate the effect of a porous calcium phosphate/bone matrix gelatin (BMG) composite cement (hereinafter referred to as the " porous composite cement”) for repairing lumbar vertebral bone defect in a rabbit model. Methods BMG was extracted from adult New Zealand rabbits according to the Urist’s method. Poly (lactic-co-glycolic) acid (PLGA) microsphere was prepared by W/O/W double emulsion method. The porous composite cement was developed by using calcium phosphate cement (CPC) composited with BMG and PLGA microsphere. The physicochemical characterizations of the porous composite cement were assessed by anti-washout property, porosity, and biomechanical experiment, also compared with the CPC. Thirty 2-month-old New Zealand rabbits were used to construct vertebral bone defect at L3 in size of 4 mm×3 mm×3 mm. Then, the bone defect was repaired with porous composite cement (experimental group, n=15) or CPC (control group, n=15). At 4, 8, and 12 weeks after implantation, each bone specimen was assessed by X-ray films for bone fusion, micro-CT for bone mineral density (BMD), bone volume fraction (BVF), trabecular thickness (Tb. Th.), trabecular number (Tb.N.), and trabecular spacing (Tb. Sp.), and histological section with toluidine blue staining for new-born bone formation. Results The study demonstrated well anti-washout property in 2 groups. The porous composite cement has 55.06%±1.18% of porosity and (51.63±6.73) MPa of compressive strength. The CPC has 49.38%±1.75% of porosity and (63.34±3.27) MPa of compressive strength. There were significant differences in porosity and compressive strength between different cements (t=4.254, P=0.006; t=2.476, P=0.034). X-ray films revealed that the zone between the cement and host bone gradually blurred with the time extending. At 12 weeks after implantation, the zone was disappeared in the experimental group, but clear in the control group. There were significant differences in BMD, BVF, Tb. Th., Tb. N., and Tb. Sp. between 2 groups at each time point (P<0.05). Histological observation revealed that there was new-born bone in the cement with the time extending in 2 groups. Among them, bony connection was observed between the new-born bone and the host in the experimental group, which was prior to the control group. Conclusion The porous composite cement has dual bioactivity of osteoinductivity and osteoconductivity, which are effective to promote bone defect healing and reconstruction.

    Release date:2017-12-11 12:15 Export PDF Favorites Scan
  • 羟基乙酸治疗痤疮不良反应预防及护理

    目的探讨羟基乙酸治疗痤疮有效护理方法。 方法回顾性分析总结2010年4月-2013年4月采用羟基乙酸治疗162例痤疮患者的护理经验。 结果羟基乙酸对痤疮治愈率30.25%,显效率40.74%,总有效率70.99%,治愈次数1~6次。经对症护理,治疗后反应轻、不良反应少。 结论合理的护理有助于羟基乙酸治疗痤疮后皮损的恢复。做好治疗前沟通,治疗中、治疗后不良反应的观察及预防尤其重要,是保证治疗成功的重要因素。

    Release date: Export PDF Favorites Scan
  • BIOCOMPATIBILITY OF POLY-LACTIDE-CO-GLYCOLIDE /COLLAGEN TYPE I SCAFFOLD WITH RAT VAGINAL EPITHELIAL CELLS

    ObjectiveTo explore the biocompatibility of the poly-lactide-co-glycolide (PLGA)/collagen type I scaffold with rat vaginal epithelial cells, and the feasibility of using PLGA/collagen type I as scaffold to reconstruct vagina by the tissue engineering. MethodsPLGA/collagen type I scaffold was prepared with PLGA covered polylysine and collagen type I. The vaginal epithelial cells of Sprague Dawley rat of 10-12 weeks old were cultured by enzyme digestion method. The vaginal epithelial cells of passage 2 were cultured in the leaching liquor of scaffold for 48 hours to detect its cytotoxicity by MTT. The vaginal epithelial cells were inoculated on the PLGA/collagen type I scaffold (experimental group) and PLGA scaffold (control group) to calculate the cell adhesion rate. Epithelial cells-scaffold complexes were implanted subcutaneously on the rat back. At 2, 4, and 8 weeks after implantation, the epithelial cells-scaffold complexes were harvested to observe the cell growth by HE staining and immunohistochemical analysis. The epithelial cells-scaffold complexes were transplanted to reconstruct vagina in 6 rats with vaginal defect. After 3 and 6 months, the vaginal length was measured and the appearance was observed. The neovagina tissues were harvested for histological evaluation after 6 months. ResultsThe epithelial cells grew and proliferated well in the leaching liquor of PLGA/collagen type I scaffold, and the cytotoxicity was at grade 1. The cell adhesion rate on the PLGA/collagen type I scaffold was 71.8%±9.2%, which significantly higher than that on the PLGA scaffold (63.4%±5.7%) (t=2.195, P=0.005). The epithelial cells could grow and adhere to the PLGA/collagen type I scaffolds. At 2 weeks after implanted subcutaneously, the epithelial cells grew and proliferated in the pores of scaffolds, and the fibroblasts were observed. At 4 weeks, 1-3 layers epithelium formed on the surface of scaffold. At 8 weeks, the epithelial cells increased and arranged regularly, which formed the membrane-like layer on the scaffold. The keratin expression of the epithelium was positive. At 3 months after transplantation in situ, the vaginal mucosa showed pink and lustrous epithelialization, and the majority of scaffold degraded. After 6 months, the neovagina length was 1.2 cm, without obvious stenosis; the vaginal mucosa had similar appearance and epithelial layer to normal vagina, but it had less duplicature; there were nail-like processes in the basal layer, but the number was less than that of normal vagina. The immunohistochemistry staining for keratin was positive. ConclusionThe PLGA/collagen type I scaffolds have good cytocompatibility with the epithelial cells, and can be used as the biodegradable polymer scaffold of the vaginal tissue engineering.

    Release date: Export PDF Favorites Scan
  • RECONSTRUCTION OF UROTHELIUM TISSUE USING ISSUE-ENGINEERING TECHNIQUE

    Objective To evaluate the feasibility of reconstructionof urothelium tissue in vivo using tissue-engineering technique. Methods The urothelium cells were obtained from young rabbit, bladder by mechanical and enzyme digested methods. After expanded in vitro, the 4th to 5th generation urothelium cells were seeded onto the surface of 8 Polylatical/glycolic acid copolymer polymer,the polymer matrix without seeding cells served as control group. A total of 8 cell-polymer scaffolds and 4 simply scaffolds were separately implanted into subcutaneous pockets of athymic mice. Theexperiment groups included cell-polymer scaffolds 4 weeks and cell-polymer scaffolds 8 weeks. The control group included simply scaffold 4 weeks and simply scaffold 8 weeks.After 4 and 8 weeks, the specimens were obtained and examined by gross inspection, histologically and immunohistochemically. Results The results of HE and Masson staining showed that the polymer were covered by urothelium cells layers and cells layers increased markly in experimental group. Immuocytochemical studies revealed that the cells were stained positively for anti-cytokeratins (AE1/AE3) in experimental group. Fiber tissue deposition were found on the surface of polymers in control group by HE and Masson staining. Immunocytochemical staining of implants showed the negative result for cytokeratins in control group. Conclusion It is feasibility that reconstruction of urothelium tissue using tissue-engineering -technique,whichprovides basic understandings for further development of the bladder and ureteral tissue engineered research.

    Release date:2016-09-01 09:25 Export PDF Favorites Scan
  • In vivo degradation of magnesium alloys and poly (lactic-co-glycolic acid) and degradation evaluation of magnesium alloys using micro-ct

    ObjectiveTo explore the degradation of AZ31 magnesium alloy and poly (lactic-co-glycolic acid) (PLGA) in the femoral condyle, and then evaluate the laws of degradation of AZ31 magnesium alloy by Micro-CT images and data. MethodsForty 3-month-old male New Zealand white rabbits (weighing, 2.5 kg) were randomly divided into 4 groups, 10 rabbits each group. Forty micro-arc-oxidized AZ31 magnesium alloy pins and 40 PLGA pins were implanted into the right and left femoral condyle, respectively. Micro-CT images and data analysis were used to evaluate the degradation at 4, 8, 12, and 16 weeks after operation (n=10). Degradation was evaluated by weight difference between pre-and post-implantation. The inflammatory response was observed around the implants by HE staining. The weight loss of magnesium alloy and Micro-CT results were compared. ResultsThe Micro-CT images showed that PLGA pins had gray low signal, which was similar to the soft tissue around. At 4 weeks after operation, no signs of degradation were observed, and there were little corrosion pitting on the magnesium alloy. At 8 weeks, corrosion pitting gradually expanded, the boundary between the longitudinal axis and the cross section became blurred; at 16 weeks, corrosion pitting became bigger, and the boundary was discontinuous. Micro-CT quantitative analysis showed that the volume fraction of magnesium pins decreased slowly at 4 and 8 weeks; it was significantly lower at 12 and 16 weeks than 4 and 8 weeks (P < 0.05). The magnesium cylinder mineral density continuously decreased during the study period, it had a rapidly speed from 12 to 16 weeks (P < 0.05). However, the magnesium CT image density showed a slight change (P>0.05). The surface-to-volume ratio of the pins constantly increased, and the ratio was significantly larger at 12 and 16 weeks than 4 and 8 weeks, and at 16 weeks than 12 weeks (P < 0.05). There was more and more corrosion pitting on the surface with time, which resulted in a decrease in the radius that mean trabecular thickness gradually decreased, showing significant difference between different time points after 8 weeks (P < 0.05). The weight loss detection showed that the degradation of magnesium pin and PLGA gradually increased with time (P < 0.05), and the degradation rate of magnesium pin was significantly lower than that of PLGA at 8-12 weeks (P < 0.05), but the degradation rate of magnesium pin was higher than that of PLGA at 16 weeks. At each time point, the weight loss of magnesium alloy was similar to that by Micro-CT, but mass fraction was lower than volume fraction and had significant differences at 8, 12, and 16 weeks (P < 0.05). HE staining revealed that slight inflammatory response was observed around the magnesium pins at 4 weeks, and inflammatory reaction gradually reduced with time and disappeared at 16 weeks, but no inflammatory reaction was seen around PLGA. ConclusionMicro-CT has the advantages of non-trauma, in vivo detection, quantitative analysis, and precise data in evaluating the degradation of AZ31 magnesium alloy. Regarding the degradation of the magnesium alloy and PLGA in vivo, the degradation rate is slow in the early stage, and then increases with time. The degradation of PLGA is faster and earlier but it is then overtaken by AZ31 magnesium alloy at 16 weeks. During the degradation, the density of the magnesium has almost no change. The biomaterials can not firmly attach to the surrounding tissues due to inadequate holding forces.

    Release date: Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content