ObjectiveTo explore the influence of enhanced recovery after surgery (ERAS) on intestinal flora in patients with colorectal cancer.MethodsBy convenient sampling method, 60 patients with colorectal cancer were selected from August 2018 to December 2019 in the Department of Gastrointestinal Surgery of West China Hospital of Sichuan University and randomly divided into ERAS group and traditional treatment group (traditional group). Among them, the perioperative clinical management was carried out according to the ERAS management and traditional treatment process in the the ERAS group and in the traditional group, respectively. The fresh fecal samples were collected within 24 h after admission and the first natural defecation after operation. The bacterial 16 Sr DNA V3–V4 region was sequenced by Illumina MiSeq sequencer, and the results were analyzed by bioinformatics.ResultsA total of 60 patients with colorectal cancer were included, 30 cases in the traditional group and 27 cases in the ERAS group (3 people temporarily withdrew from the study). There were no significant differences in the basic informations between the two groups (P>0.05). ① Before or after operation, there were no significant differences in Shannon index and Simpson index between the two groups. The difference between preoperative and postoperative comparison in the same group was also not statistically significant (P>0.05). ② Beta diversity analysis showed that there was no significant difference in community composition between the traditional group and the ERAS group before operation, and there was a clear boundary between the traditional group and the ERAS group after operation. ③ At the phylum level, compared with the preoperative abundance, the postoperative abundance Firmicutes decreased by 26.5% and 5.5% in the traditional and ERAS group, respectively; Bacteroidetes increased by 21.6% and 4.7% in the traditional and ERAS group, respectively; Proteobacteria increased by 7.2% and 2.2% in the traditional and ERAS group, respectively. At the genus level, compared with the preoperative abundance, the postoperative abundance of Bacteroides in the traditional group increased by 17.6% and in the ERAS group decreased by 1.6%; Bifidobacterium decreased by 1.8% and 1.3% in the traditional group and in the ERAS group, respectively.ConclusionsERAS does not affect species diversity of intestinal flora. Although ERAS has some damage to structure of intestinal flora, it is weaker than traditional process, so it is more conducive to reconstruction and restoration of intestinal microecological environment.
Type 1 diabetes mellitus (T1DM) is an autoimmune disease in which pancreatic β cells are destroyed, resulting in an absolute lack of insulin. Intestinal microbiota and its metabolites can promote the progression of T1DM by destroying pancreatic β cells, increasing insulin resistance, increasing intestinal permeability, interfering with immune response. Therefore, fecal microbiota transplantation is expected to become a new method for preventing and treating T1DM in the future. This article mainly explores possible pathways for the application of fecal microbiota transplantation in T1DM, including protection of pancreatic β cells, improving insulin resistance, reducing intestinal permeability, and regulating immune responses.
ObjectiveTo summarize the recent advances in the pathogenic mechanism of microorganisms and pancreatic cancer.MethodThrough the retrieval of relevant literatures, the recent progresses in the study of microorganism and pathogenesis of pancreatic cancer were reviewed.ResultsIn recent years, the potential role of intestinal microbiota in the pathogenic mechanism of pancreatic cancer had been studied. The studies found that the microbiome played an important role in the development of pancreatic cancer. Among them, the infections of Helicobacter pylori, oral pathogenic bacteria such as the Porphyromonas ginggivalis, Aggregatibacter actinomycetemcomitans and Phylum fusobacteria, and the changes of composition and diversity of intestinal microflora were closely related to the pancreatic cancer. The microorganisms induced the chronic inflammation and immune response through multiple pathways. The bacterial lipopolysaccharide stimulated the mutations in the KARS gene and mediated the inflammatory response by activating the nuclear factor-κB signaling pathway through Toll like receptor. The oral pathogenic microorganisms and Helicobacter pylori could also promote the cancer progression by secreting toxins that activated cancer-related signaling pathways.ConclusionsBacteria might be important carcinogens. These microorganisms promote development of cancer by causing chronic inflammation, activating cancer-related pathways, activating immune response, oxidative stress, and damaging DNA double strands.
Postoperative delirium (POD) is a common postoperative complication. Dysregulation of gut flora is involved in POD through mechanisms such as neuroinflammation, oxidative stress, deposition of β-amyloid, and aberrant production of metabolites of gut flora. Therefore, interventions to regulate gut flora, such as probiotics, prebiotics, and faecal microbiota transplantation, can alleviate cognitive dysfunction. This article reviews the mechanisms of gut flora in POD and its prevention and treatment strategies, with the aim of providing new ideas for the clinical prevention and treatment of POD.
In recent years, the diversity of gut microbiota and the role of its metabolites in cardiovascular disease (CVD) have attracted widespread attention. Gut microbiota metabolites not only play an important role in maintaining gut health, but may also influence cardiovascular health through a variety of mechanisms. As one of the important products of gut microbiota metabolism, sulfate’s biosynthetic pathway, metabolic dynamics and potential effects on cardiovascular system have become the focus of research. However, the current research on the relationship between sulfate and cardiovascular disease still has some shortcomings, including the mechanism is not clear, and clinical data are limited. This article reviewed the biosynthesis of sulfate and its mechanism of action in cardiovascular diseases, and combined with the existing clinical research results, aimed to provide new perspectives and ideas for future research, in order to promote the in-depth exploration and development of this field.
Objective To explore the relationship between the gut microbiome (GM) and psoriasis using a two-sample two-way Mendelian randomization (MR) approach. Methods The forward analysis uses the gut microbiota as the exposure factor, and its genetic data are derived from the genome-wide association study dataset published by the MiBioGen consortium. Psoriasis was used as the outcome variable, and its genetic data were obtained from the UK Biobank. The reverse MR analysis, on the other hand, took psoriasis as the exposure and the specific gut microbiota taxonomic units identified in the forward analysis as the outcome variable. MR analysis was conducted using maximum likelihood, MR Egger regression, weighted median, inverse variance weighting (IVW), and weighted models to study the causal relationship between the gut microbiota and psoriasis. Then, sensitivity analyses including horizontal pleiotropy test, Cochran’s Q test, and leave-one-out analysis were used to evaluate the reliability of the results. Results A total of 51 single nucleotide polymorphisms from 5 fungi were included in the forward study. The forward IVW analysis results showed that, the class Mollicutes [odds ratio (OR)=1.003, 95% confidence interval (CI) (1.001, 1.006), P=0.004], genus Lachnospiraceae FCS020 group [OR=1.003, 95%CI (1.000, 1.006), P=0.041], and phylum Tenericutes [OR=1.003, 95%CI (1.001, 1.006), P=0.004] were causally associated with an increased risk of psoriasis. The family Victivallaceae [OR=0.998, 95%CI (0.997, 1.000), P=0.005] and order Pasteurellales [OR=0.998, 95%CI (0.996, 1.000), P=0.047] were also linked to a decreased risk of psoriasis. The results of the sensitivity analysis were robust. There was no evidence of a reverse causal relationship from psoriasis to the identified bacterial taxa found in the results of reverse MR analysis results. Conclusions The abundance of three species, class Mollicutes, genus Lachnospiraceae and phylum Tenericutes, may increase the risk of psoriasis. The abundance of two species, family Victivallaceae and order Pasteurellales may reduce the risk of psoriasis. These results provide new directions for the prevention and treatment of psoriasis in the future, but further research is needed to explore how the aforementioned microbiome affects the progression of psoriasis.
Lung cancer is one of the most lethal cancer, and the overall survival rate of lung cancer patients is very low. With the increasing research on lung cancer, the critical role of intestinal flora in lung cancer treatment has been gradually discovered. Among the various therapeutic approaches targeting the intestinal flora, Fecal microbiota transplantation (FMT) is considered as a potential strategy to treat lung cancer by interfering with the homeostasis of the intestinal flora. FMT can improve the efficacy of lung cancer treatment and attenuate the side effects associated with immunotherapy, chemotherapy, and radiotherapy by remodeling the microbial composition, modulating the metabolites, and activating immune responses. The aim of this paper is to discuss the current status and potential mechanisms of FMT in lung cancer treatment, and to provide a new strategy for regulating the intestinal flora to enhance the prevention and treatment of lung cancer.
ObjectiveTo review the association of gut microbiota and postoperative gastrointestinal dysfunction (GID) in patients after abdominal surgery and to provide a new idea for the pathogenesis, prevention, and treatment of postoperative GID in patients after abdominal surgery.MethodThe related and latest literatures were reviewed by searching the literatures on “intestinal flora” “gut microbiota” “intestinal microbial population” “brain-gut axis” “gastrointestinal function” “gastric paralysis” “intestinal paralysis” and “ileus” from January 1, 2000 to April 2, 2021 in Chinese and English databases.ResultsGut microbiota diversity was closely related to postoperative GID symptoms in patients after abdominal surgery. Gut microbiota regulated gastrointestinal motility and mucosal barrier function by metabolizing food to produce metabolites such as 5-hydroxytryptamine, melatonin, short-chain fatty acid, succinic acid, lactic acid, and so on.ConclusionsThe imbalance of gut microbiota is closely related to postoperative GID in patients after abdominal surgery. However, the relevant bacterial metabolites that have been found are limited at present, and the relevant mechanism needs to be further investigated.
Diabetic neuropathic pain (DNP) is one of the most common and complex complications of diabetes. In recent years, studies have shown that gut microbiota can regulate inflammatory response, intestinal permeability, glucose metabolism, and fatty acid oxidation, synthesis, and energy consumption by regulating factors such as lipopolysaccharides, short chain fatty acids, bile acids, and branched chain amino acids, achieving the goal of treating DNP. This paper summarizes the relevant mechanisms of gut microbiota in the treatment of DNP, the relevant intervention measures of traditional Chinese and western medicine, in order to provide new ideas for clinical treatment of DNP.
The correlation between gut microbes and epilepsy is a hot research topic. This review aims to summarize the effects of Ketogenic diet (KD) on gut microbes and the preclinical and clinical progress of the use of Fecal microbiota transplants (FMT) and Probiotics in the intervention of epilepsy to provide clinical reference. Gut microbes mediates the antiepileptic effect of KD. Many studies have found that bactericides decreased in epileptic patients, and KD can increase bactericides abundance, which may be one of its effective mechanisms. Both FMT and probiotics showed antiepileptic effects on epileptic model mice with different pathogenesis, suggesting that gut microbes is an important target for epilepsy treatment. Preliminary clinical studies of small samples suggest that the use of probiotics can effectively treat refractory epilepsy and autoimmune-associated epilepsy, and can improve comorbidities. No serious and long-term side effects of probiotics have been found in epileptic patients. In the future, more high-quality studies are needed to further clarify its efficacy and mechanisms, which could lead to new strategies for epilepsy treatment and refresh our understanding of the causes of epilepsy.