ObjectiveTo evaluate the efficacy of XiaochengqiMixture (XM) on promoting healing of colonic stoma. MethodsForty Wistar rats were divided into two groups randomly after colonectomy: experimental group (n=20) and control group (n=20). In early postoperatively stage rats were given gastric administration of XM in the experimental group and pure water in the control group. On day 3, 7, and 14 after establishment of animal models, laparotomy was performed in two groups of rats, respectively. Anastomotic stoma and surrounding tissues were harvested to detect the context of hydroxyproline and collagen fiber proportion by Masson dying. ResultsOn day 3 after establishment of animal models, hyperplastic collagen with small fiber was observed while no fasciculus was found. Hydroxyproline context and collagen fiber proportion of rats were higher in experimental group than those in control group (Plt;0.05). On day 7 after operation, many fasciculuses were found in two groups of rats, hydroxyproline context and collagen fiber proportion of rats were higher in experimental group than those in control group (Plt;0.01). On day 14 after operation, fasciculuses became bigger and more regular in arrangement, but there was no significant difference between the two groups (Pgt;0.05). ConclusionXM is capable of promoting healing of colonic stoma and might prevent the occurrence of anastomotic fistula.
OBJECTIVE: To build the trestle of tissue engineering for skin with the collagen. METHODS: The collagen was obtained from the baby cattle hide pretreated by Na2S and elastinase and Protease M, then the collagen was dissolved in 0.5 mol/L acetic acid solution. The collagen was treated with Protease N to minimize its immunogenicity. The resulting collagen could be used to build the trestle of tissue engineering for skin because of good biocompatibility. The collagen molecular weight and structure were analyzed by SDS-PAGE. The bioactivity of trestle was tested in the experiment of the mice wound healing and the cell implantation. RESULTS: The SDS-PAGE result of the collagen treated by Protease M showed the typical spectrum of type I collagen. The built trestle was a collagen sponge matrix in which micropore size was 50-200 microns. It could accelerate wound healing and the implanted fibroblasts could proliferate well. CONCLUSION: The collagen treated by Protease N can get good biocompatibilily and is suitable for building the trestles of tissue engineering for skin with good bioactivity.
Objective To study the influence of transforming growth factor-β1(TGF-β1), dentin non-collagen proteins(dNCPs) and their complexon tissue engineering pulp system. Methods Collagen I and dentin powder were used to construct the system of pulp cells in 3dimensional culture, dentin powder was added in the gel. The tissue engineering pulp were divided TGF-β1 group, dNCPs group, TGF-β1/dNCPsgroup and control group.After3, 6 and 14 days, the appearance and the differentiation of pulp cells were observed by HE staining and immunohistochemical staining -respectively. Results Collagen I could form netted collagen gel construction. Growing condition of pulp cells in gel was similar to that of pulp cells in vivo. After the TGF-β1 and dNCPswere added, the pulp cells had some characteristics of odontoblasts and had unilateral cell process after culture 6 days. Pulp cells arranged with parallel columnar and form dentin-pulp-like complex after 14 days. Immunohistochemical staining showed dentin salivary protein(DSP) began to express in some cells.The number of positive cell was most in the TGF-β1 group. No positive cells were detected in the control group. Conclusion The transforming growth factor-β1 and noncollagen proteins can stimulate the pulp cells to transform into odontoblasts to some extent, which promote the formation of tissue engineering pulp.
Objective To investigate the preventive effect of carbachol on the formation of postoperative intra-abdominal adhesion. Methods Forty-four Wistar rats were randomly divided into sham operation group (SO group, n=12), operation group (n=16) and carbachol treated group (carbachol group, n=16, carbachol 50 μg/kg). Animal model of abdominal adhesion was established by rubbing the procussus vermiformis of cecum with dry sterile gauze, and by clamping and scuffing abdominal wall. Half of rats were separately killed on day 7 and day 14 after surgery, respectively. The degree of adhesion was evaluated according to Phillips 5-scale grade and the feature of this model. The histopathological changes of adhesive tissues were observed and the content of collagen type Ⅰ in the tissues was detected by immunohistochemistry. Results The scores of intra-abdominal adhesion were significantly lower in the carbachol group than those in operation group both on 7 d and 14 d (P<0.01). Mild inflammatory changes and less fibrous proliferation were observed in carbachol group microscopically. The contents of collagen type Ⅰ detected by immunohistochemistry were significantly lower in the carbachol group than those in operation group both on 7 d and 14 d (P<0.01). There was no significant difference of the score of abdominal adhesion and content of collagen type Ⅰ in the same group between 7 d and 14 d (Pgt;0.05). Conclusion Carbachol may take a significant role in the prevention of postoperative abdominal adhesion in rat.
Objective To evaluate the bone regenerative potential of reconbinant human bone morphogenetic protein 2(rhBMP-2) / collagen on adult rat calvarial bone. Methods A tight subperiosteal pocket was produced under both sides ofthe temporal muscle in rats. rhBMP-2 / collagen was implanted in one side and collagen alone was implanted in the other side as control. The rats were sacrificed 2, 4 and 8 weeks after operation. The specimen was harvested and examined histologically. For morphometric analysis, the thickness of the temporal bone of both sides was measured and compared. Results The rhBMP-2 / collagen onlay implant resulted in active bone formation and the augmented bone was connected directly with the original bone, whereas the collagen alone resulted in neither bone nor cartilage production. The ossification process in the rhBMP-2 / collagen occurred directly through bone formation, similar to intramembranous ossification. Conclusion rhBMP-2 / collagen is an effective material as a biological onlay implant.
OBJECTIVE The effect of platelet-derived wound healing factor (PDWHF) on wound healing in diabetic rats was studied. METHODS Forty-four male SD rats were randomly divided into 2 groups. Thirty-two rats of experimental group accepted intraperitoneal injection of alloxan (1.5 mg/10 g body weight). Within one or two days after injection, while the blood sugar of the rats was higher than 180 mg/dl, the animal model of diabetic rat should have been established. Then a dorsal incision was given to every rat. After the addition of PDWHF (the experimental group) or bovine albumin (the control group), the incision was sutured up. Seven, ten and fourteen days after operation, the breaking strength of the wound was measured. On another hand, specimen from the wound was taken for the culture of fibroblasts. When the cultured fibroblasts have been incubated with 10% PDWHF for 4, 8 and 12 hours, the procollagen I (alpha 1) mRNA levels were examined respectively, and compared with those of control. RESULTS Significant difference in wound breaking strength had been observed between PDWHF-treated incisions and the control on 7, 10 and 14 days after wounding (P lt; 0.01). Experiment in vitro demonstrated that the procollagen I (alpha 1) mRNA levels in wound fibroblasts incubated with 10% PDWHF for 4, 8 and 12 hours were 0.9, 3.7 and 2.2 folds higher than those in fibroblasts in control. CONCLUSION It was suggested that direct stimulation of procollagen I (alpha 1) gene expression was one of the ways that PDWHF played its role in accelerating wound healing.
OBJECTIVE: To repair esophageal defects with an artificial prosthesis composed of biodegradable materials and nonbiodegradable materials, which is gradually replaced by host tissue. METHODS: The artificial esophagus was a two-layer tube consisting of a chitosan-collagen sponge and an inner polyurethane stent with a diameter of 20 mm and a length of 50 mm. We used the artificial esophagus to replace 5 cm esophageal defects in group I (five dogs) and in group II (ten dogs), and nutritional support was given after operation. The inner polyurethane stent was removed after 2 weeks in group I and after 4 weeks in group II endoscopically and epithelization of the regenerated esophagus was observed by histologic examination and transmission electron microscope. RESULTS: In group I, the polyurethane stent was removed after 2 weeks, and partial regeneration of esophageal epithelial was observed; and constriction of the regenerated esophagus progressed and the dogs became unable to swallow after 4 weeks. In group II, the polyurethane stent was removed after 4 weeks, highly regenerated esophageal tissue successfully replaced the defect and complete epithelization of the regenerated esophagus was observed. After 12 weeks, complete regeneration of esophageal mucosa structures, including mucosal smooth muscle and mucosal glands and partial regeneration of esophageal muscle tissue were observed. CONCLUSION: Esophageal high-order structures can be regenerated and provided a temporary stent and support by polyurethane stent and an adequate three-dimensional structure for 4 weeks by collagen-chitosan sponge.
ObjectiveTo explore the expression of collagen Ⅳ in breast cancer and its clinical significance. We analyzed the correlation of the results with other prognostic parameters which included tumor size, status of estrogen receptor, axillary nodal status, TNM grade, and 5 years survival. The expression of collagen Ⅳ in 93 cases of human primary breast cancer as well as 5 cases of benign breast masses were examined.MethodsUsing monoclonal antibodies of collagen Ⅳ, the expression of collagen Ⅳ in breast masses were detected with immunohistochemical technique (LSAB).ResultsThe absent expression of collagen Ⅳ in the tumor masses was correlated with axillary lymph node involvement, tumor size and poor prognosis (5 years survival). The patients who had no expression of collagen Ⅳ in tumor masses had a shorter survival. ConclusionThe expression of collagen Ⅳ in tumor samples are correlated with axillary node involvement and prognosis. Collagen Ⅳ would be helpful for evaluation of invasion and treatment in breast carcinoma.
Objective To investigate the effect of hepatitis C virus (HCV) F protein on proliferation and collagen expression of hepatic stellate cells. Methods After pcDNA3.1-f plasmid containing HCV f gene or empty pcDNA3.1 plasmid was transfected hepatic stellate cells LX2 by liposome, LX-f or LX-p cells were obtained by G418 screening. The proliferation of LX-f or LX-p cells was analyzed by MTT, and the contents of collagen type Ⅰand Ⅲ secreted by LX-f or LX-p cells were detected by ELISA. Results After 24 h cultivation, the proliferation rate of LX-f cells was higher than that of LX-p cells at each time point (Plt;0.01). After 48 h cultivation, the contents of collagen typeⅠand Ⅲ secreted by LX-f were (25.89±0.42) ng/ml and (18.21±0.49) ng/ml, which was significantly higher than those of LX-p cells 〔(22.65±0.49) ng/ml and (15.29±0.62) ng/ml〕, Plt;0.01. Conclusion HCV F protein is able to promote proliferation of hepatic stellate cells, and up-regulate the excretion of collagen type Ⅰand Ⅲ in those cells, which induces hepatic fibrosis.
Objective To investigate the effect of collagen type I concentration on the physical and chemical properties of the collagen hydrogel, and to analyze the effect of different concentrations of collagen type I hydrogel on the phenotype and gene expression of the chondrocytes in vitro. Methods Three kinds of collagen hydrogels with concentrations of 12, 8, and 6 mg/ mL (C12, C8, and C6) were prepared, respectively. The micro-structure, compressive modulus, and swelling ratio of the hydrogels were measured and analyzed. The chondrocytes at 2nd passage were cocultured with three kinds of collagen hydrogels in vitro, respectively. After 1-day culture, the samples were stained with fluorescein diacetate (FDA) / propidium iodide (PI) and the cell activity was observed under confocal laser microscope. After 14-day culture, HE staining and toluidine blue staining were carried out to observe the histological morphology, and mRNA expressions of chondrocytes related genes (collagen type II, Aggrecan, collagen type I, collagen type X, Sox9) were determined by real-time fluorescent quantitative PCR. Results With the increase of collagen type I concentration from 6 to 12 mg/mL, the physical and chemical properties of the collagen hydrogels changed significantly: the fiber network became dense; the swelling ratios of C6, C8, and C12 were 0.260 ± 0.055, 0.358 ± 0.072, and 0.539 ± 0.033 at 192 hours, respectively, showing significant differences among 3 groups (P lt; 0.05); and the compression modulus were (4.86 ± 0.96), (7.09 ± 2.33), and (11.08 ± 3.18) kPa, respectively, showing significant differences among 3 groups (P lt; 0.05). After stained with FDA/PI, most cells were stained green, and few were stained red. The histological observation results showed that the chondrocytes in C12 hydrogels aggregated obviously with b heterochromia, chondrocytes in C8 hydrogels aggregated partly with obvious heterochromia, and chondrcytes in C6 hydrogels uniformly distributed with weak heterochromia. Real-time fluorescent quantitative PCR results showed that the mRNA expressions of collagen type II and Aggrecan were at the same level in C12, C8, and C6; the expressions of collagen type I, Sox9, and collagen type X were up-regulated with the increase of collagen type I hydrogels concentration, and the expressions were the highest at 12 mg/mL and were the lowest at 6 mg/mL, showing significant differences among 3 groups (P lt; 0.05). Conclusion Increasing the concentration of collagen hydrogels leads to better mechanical properties and higher shrink-resistance, but it may induce the up-regulation of cartilage fibrosis and hypertrophy related gene expression.