west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "脑机接口" 50 results
  • Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis

    In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCI) systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset Ⅳa from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.

    Release date: Export PDF Favorites Scan
  • Research advances in non-invasive brain-computer interface control strategies

    Brain-computer interface (BCI) can establish a direct communications pathway between the human brain and the external devices, which is independent of peripheral nerves and muscles. Compared with invasive BCI, non-invasive BCI has the advantages of low cost, low risk, and ease of operation. In recent years, using non-invasive BCI technology to control devices has gradually evolved into a new type of human-computer interaction manner. Moreover, the control strategy for BCI is an essential component of this manner. First, this study introduced how the brain control techniques were developed and classified. Second, the basic characteristics of direct and shared control strategies were thoroughly explained. And then the benefits and drawbacks of these two strategies were compared and further analyzed. Finally, the development direction and application prospects for non-invasive brain control strategies were suggested.

    Release date:2022-12-28 01:34 Export PDF Favorites Scan
  • 多学科诊疗模式下青年肾病综合征并发脑梗死的康复治疗一例

    Release date:2025-05-26 04:29 Export PDF Favorites Scan
  • Tensor Feature Extraction Using Multi-linear Principal Component Analysis for Brain Computer Interface

    The brain computer interface (BCI) can be used to control external devices directly through electroencephalogram (EEG) information. A multi-linear principal component analysis (MPCA) framework was used for the limitations of tensor form of multichannel EEG signals processing based on traditional principal component analysis (PCA) and two-dimensional principal component analysis (2DPCA). Based on MPCA, we used the projection of tensor-matrix to achieve the goal of dimensionality reduction and features exaction. Then we used the Fisher linear classifier to classify the features. Furthermore, we used this novel method on the BCI competitionⅡdataset 4 and BCI competitionⅣdataset 3 in the experiment. The second-order tensor representation of time-space EEG data and the third-order tensor representation of time-space-frequency EEG data were used. The best results that were superior to those from other dimensionality reduction methods were obtained by much debugging on parameter P and testQ. For two-order tensor, the highest accuracy rates could be achieved as 81.0% and 40.1%, and for three-order tensor, the highest accuracy rates were 76.0% and 43.5%, respectively.

    Release date: Export PDF Favorites Scan
  • Research of Controlling of Smart Home System Based on P300 Brain-computer Interface

    Using electroencephalogram (EEG) signal to control external devices has always been the research focus in the field of brain-computer interface (BCI). This is especially significant for those disabilities who have lost capacity of movements. In this paper, the P300-based BCI and the microcontroller-based wireless radio frequency (RF) technology are utilized to design a smart home control system, which can be used to control household appliances, lighting system, and security devices directly. Experiment results showed that the system was simple, reliable and easy to be populirised.

    Release date: Export PDF Favorites Scan
  • Detection of motor intention in patients with consciousness disorder based on electroencephalogram and functional near infrared spectroscopy combined with motor brain-computer interface paradigm

    Clinical grading diagnosis of disorder of consciousness (DOC) patients relies on behavioral assessment, which has certain limitations. Combining multi-modal technologies and brain-computer interface (BCI) paradigms can assist in identifying patients with minimally conscious state (MCS) and vegetative state (VS). This study collected electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals under motor BCI paradigms from 14 DOC patients, who were divided into two groups based on clinical scores: 7 in the MCS group and 7 in the VS group. We calculated event-related desynchronization (ERD) and motor decoding accuracy to analyze the effectiveness of motor BCI paradigms in detecting consciousness states. The results showed that the classification accuracies for left-hand and right-hand movement tasks using EEG were 93.28% and 76.19% for the MCS and VS groups, respectively; the classification precisions using fNIRS were 53.72% and 49.11% for these groups. When combining EEG and fNIRS features, the classification accuracies for left-hand and right-hand movement tasks in the MCS and VS groups were 95.56% and 87.38%, respectively. Although there was no statistically significant difference in motor decoding accuracy between the two groups, significant differences in ERD were observed between different consciousness states during left-hand movement tasks (P < 0.001). This study demonstrates that motor BCI paradigms can assist in assessing the level of consciousness, with EEG being more sensitive for evaluating residual motor intention intensity. Moreover, the ERD feature of motor intention intensity is more sensitive than BCI classification accuracy.

    Release date:2025-06-23 04:09 Export PDF Favorites Scan
  • Research on performance of motor-imagery-based brain-computer interface in different complexity of Chinese character patterns

    The traditional paradigm of motor-imagery-based brain-computer interface (BCI) is abstract, which cannot effectively guide users to modulate brain activity, thus limiting the activation degree of the sensorimotor cortex. It was found that the motor imagery task of Chinese characters writing was better accepted by users and helped guide them to modulate their sensorimotor rhythms. However, different Chinese characters have different writing complexity (number of strokes), and the effect of motor imagery tasks of Chinese characters with different writing complexity on the performance of motor-imagery-based BCI is still unclear. In this paper, a total of 12 healthy subjects were recruited for studying the effects of motor imagery tasks of Chinese characters with two different writing complexity (5 and 10 strokes) on the performance of motor-imagery-based BCI. The experimental results showed that, compared with Chinese characters with 5 strokes, motor imagery task of Chinese characters writing with 10 strokes obtained stronger sensorimotor rhythm and better recognition performance (P < 0.05). This study indicated that, appropriately increasing the complexity of the motor imagery task of Chinese characters writing can obtain stronger motor imagery potential and improve the recognition accuracy of motor-imagery-based BCI, which provides a reference for the design of the motor-imagery-based BCI paradigm in the future.

    Release date:2021-08-16 04:59 Export PDF Favorites Scan
  • Evaluation methods for the rehabilitation efficacy of bidirectional closed-loop motor imagery brain-computer interface active rehabilitation training systems

    The bidirectional closed-loop motor imagery brain-computer interface (MI-BCI) is an emerging method for active rehabilitation training of motor dysfunction, extensively tested in both laboratory and clinical settings. However, no standardized method for evaluating its rehabilitation efficacy has been established, and relevant literature remains limited. To facilitate the clinical translation of bidirectional closed-loop MI-BCI, this article first introduced its fundamental principles, reviewed the rehabilitation training cycle and methods for evaluating rehabilitation efficacy, and summarized approaches for evaluating system usability, user satisfaction and usage. Finally, the challenges associated with evaluating the rehabilitation efficacy of bidirectional closed-loop MI-BCI were discussed, aiming to promote its broader adoption and standardization in clinical practice.

    Release date:2025-06-23 04:09 Export PDF Favorites Scan
  • Research on the Methods for Electroencephalogram Feature Extraction Based on Blind Source Separation

    In the present investigation, we studied four methods of blind source separation/independent component analysis (BSS/ICA), AMUSE, SOBI, JADE, and FastICA. We did the feature extraction of electroencephalogram (EEG) signals of brain computer interface (BCI) for classifying spontaneous mental activities, which contained four mental tasks including imagination of left hand, right hand, foot and tongue movement. Different methods of extract physiological components were studied and achieved good performance. Then, three combined methods of SOBI and FastICA for extraction of EEG features of motor imagery were proposed. The results showed that combining of SOBI and ICA could not only reduce various artifacts and noise but also localize useful source and improve accuracy of BCI. It would improve further study of physiological mechanisms of motor imagery.

    Release date: Export PDF Favorites Scan
  • Multi-scale feature extraction and classification of motor imagery electroencephalography based on time series data enhancement

    The brain-computer interface (BCI) based on motor imagery electroencephalography (MI-EEG) enables direct information interaction between the human brain and external devices. In this paper, a multi-scale EEG feature extraction convolutional neural network model based on time series data enhancement is proposed for decoding MI-EEG signals. First, an EEG signals augmentation method was proposed that could increase the information content of training samples without changing the length of the time series, while retaining its original features completely. Then, multiple holistic and detailed features of the EEG data were adaptively extracted by multi-scale convolution module, and the features were fused and filtered by parallel residual module and channel attention. Finally, classification results were output by a fully connected network. The application experimental results on the BCI Competition IV 2a and 2b datasets showed that the proposed model achieved an average classification accuracy of 91.87% and 87.85% for the motor imagery task, respectively, which had high accuracy and strong robustness compared with existing baseline models. The proposed model does not require complex signals pre-processing operations and has the advantage of multi-scale feature extraction, which has high practical application value.

    Release date:2023-08-23 02:45 Export PDF Favorites Scan
5 pages Previous 1 2 3 4 5 Next

Format

Content